
CS 51P November 6, 2019

Lecture 17: Analyzing Algorithms

Three Possible Sorting Algorithms
• For each position in the list:

• Find the object that should be there; put it in the right place

• For each object in the list:
• If that object should be earlier in the list, put it in the right place

• Recursively:
• Sort the first half of the list
• Sort the second half of the list
• Merge the two halves together

Sorting Algorithms
Selection Sort

def selection_sort(lst):

for each pos in list
for pos in range(len(lst)):

find obj that should be there
min_pos = pos
for i in range(pos+1, len(lst)):
if lst[i] < lst[min_pos]:
min_pos = i

swap that obj into position pos
swap(lst, pos, min_pos)

Insertion Sort

def insertion_sort(lst):

for each obj in list
for pos in range(len(lst)):

move obj to correct position
curr_pos = pos
while curr_pos > 0 and

lst[curr_pos]<lst[curr_pos-1]:
swap(lst, curr_pos-1, curr_pos)
curr_pos = curr_pos - 1

Merge Sort
def merge_sort(lst, start, end):

Base Case
if end-start < 2:

return

Recursive Case
middle = start + int((end-start) / 2)
merge_sort(lst, start, middle)
merge_sort(lst, middle, end)
merge(lst, start, end)Which algorithm is better?

4

Suppose you have two possible algorithms that do
the same thing; which is better?
What do we mean by better?

• Correct(er)?
• Faster?
• Less space?
• Less power consumption?
• Easier to code?
• Easier to maintain?
• Required for homework?

What Makes a Good Algorithm?

• Correct(er)?
• Faster?
• Less space?

Basic Step: one “constant time” operation

5

Example Basic steps:
• Access value of a variable, list element, or object attr
• Assign to a variable, list element, or object attr
• Do one arithmetic or logical operation
• Call a function

Constant time operation: its time doesn’t depend on
the size or length of anything. Always roughly the same.
Time is bounded above by some number

Counting Steps

6

Store sum of 0..n-1 in sum
sum = 0
for i in range(n):

sum = sum + i

All basic steps take time 1.
There are n loop iterations.
Therefore, takes time
proportional to n.

Statement: # times done
sum = 0 1
i= v n
sum = sum + i n
Total steps: 2n + 1

0
50

100
150
200
250
300
350

0 20 40 60 80 100

Linear algorithm in n

Statement: # times done
s = "" 1
i = v n
s = s + 'c' n
Total steps: 2n + 1

Not all operations are basic steps

7

Store n copies of ‘c’ in s
s = ""
for i in range(n):

s = s + 'c'

Concatenation is not a
basic step. For each i,
concatenation creates and
fills i sequence elements.

Not all operations are basic steps

8

Statement: # times # steps
s = "" 1 1
i = v n 1
s = s + 'c'; n i
Total steps: (n-1)*n/2 + n + 1

0
50

100
150
200
250
300
350

0 20 40 60 80 100

Store n copies of ‘c’ in s
s = ""
for i in range(n):

s = s + 'c'

Concatenation is not a
basic step. For each i,
concatenation creates and
fills i sequence elements.

Quadratic algorithm in n

Linear versus quadractic

9

In comparing the runtimes of these algorithms, the exact number
of basic steps is not important. What’s important is that

One is linear in n—takes time proportional to n
One is quadratic in n—takes time proportional to n2

Store n copies of ‘c’ in s
s = ""
for i in range(n):

s = s + 'c'

Store sum of 1..n in sum
sum = 0
for i in range(1, n+1):

sum = sum + k;

Linear algorithm Quadratic algorithm

Looking at execution speed

10

size n of the list0 1 2 3 …

Number of
operations
executed

Constant time

n ops

n + 2 ops

2n + 2 ops
n*n ops

2n+2, n+2, n are all linear in n,
proportional to n

"Big O" Notation
• !" + 2! + 5 &(!")
• 1000! + 25000 &(!)
•
"+
,- + !

,.. &(2/)
• ! log ! + 25! &(! log !)

How Fast is Fast enough?

12

O(1) constant excellent
O(log n) logarithmic excellent

O(n) linear good
O(n log n) n log n pretty good

O(n2) quadratic maybe OK
O(n3) cubic not good
O(2n) exponential too slow

Evaluating Speed of Selection Sort
def selection_sort(lst):
for pos in range(len(lst)):
find obj that should be there
min_pos = pos
for i in range(pos+1, len(lst)):
if lst[i] < lst[min_pos]:
min_pos = i

swap that obj to position pos

swap(lst, pos, min_pos)

Times # Steps
n O(1)

n O(1)
n*O(n) O(1)
n*O(n) O(1)
<= n*O(n) O(1)

n O(1)

Selection Sort runs in time !(#$)

Comparison

selection sort

worst case O(n2)
best case O(n2)
avg case O(n2)
space O(1)

Evaluating Speed of Insertion Sort
def insertion_sort(lst):
for pos in range(len(lst)):
swap that obj to right place
curr_pos = pos
while curr_pos > 0 and

lst[curr_pos]<lst[curr_pos-1]:
swap(lst, curr_pos-1, curr_pos)
curr_pos = curr_pos - 1

Times # Steps
n O(1)

n O(1)
<=n*O(n) O(1)

<= n*O(n) O(1)
<= n*O(n) O(1)

Insertion Sort runs in time !(#$)

Comparison

selection sort insertion sort

worst case O(n2) O(n2)
best case O(n2) O(n)
avg case O(n2) O(n2)
space O(1) O(1)

Evaluating Speed of Merge Sort
def merge_sort_helper(lst, start, end):
Base Case
if (end-start) < 2:
return

Recursive Case
middle = start + int((end-start)/2)
merge_sort_helper(lst, start, middle)
merge_sort_helper(lst, middle, end)
merge(lst, start, end)

def merge_sort(lst):
merge_sort_helper(lst, 0, len(lst))

Times # Steps

1 O(1)
<=1 O(1)

1 O(1)
?
?
?

Evaluating Speed of Merge Sort
def merge(lst, start, end):
middle = (end-start)//2
olist = lst[start:middle].copy()
pos = start
i = start
j = middle
length = len(lst)
while i < middle :
if j == length or olist[i] < lst[j]:

lst[pos] = olist[i]
i += 1

else:
lst[pos] = lst[j]
j += 1

pos += 1

Times # Steps
1 2
1 O(end-start)
1 1
1 1
1 1
1 O(1)
(end-start)/2 1
(end-start)/2 5
<=(end-start)/2 2
<=(end-start)/2 3

<=(end-start)/2 2
<=(end-start)/2 3
(end-start)/2 3

Evaluating Speed of Merge Sort

Comparison

selection sort insertion sort merge sort

worst case O(n2) O(n2) O(n log n)
best case O(n2) O(n) O(n log n)
avg case O(n2) O(n2) O(n log n)
space O(1) O(1) O(n)

Sorting in Python
• List.sort()

• Sorts list in place
• Optional argument reverse=True to reverse order (greatest->least)
• Optional argument key defines expression to sort

• sorted(lst)
• Creates sorted copy of list
• Optional arguments reverse and key

