
CS 51P November 4, 2019

Lecture 16: Algorithms

Example: Sorting

An aside about memory…

Example: Sorting

Three Possible Sorting Algorithms
• For each position in the list:

• Find the object that should be there; put it in the right place

• For each object in the list:
• If that object should be earlier in the list, put it in the right place

• Recursively:
• Sort the first half of the list
• Sort the second half of the list
• Merge the two halves together

Merging
• What if our list looked like

two sorted lists end to
end?

• We could sort by merging
the two lists!

4 5 10 24 1 2 6 12

sorted sorted

Merging
• What if our list looked like

two sorted lists end to
end?

• We could sort by merging
the two lists!

4 5 10 24 1 2 6 12

4 5 10 24

1 2 4 5 6 10 12 24

Mergesort

Sorting Algorithms
Selection Sort

def selection_sort(lst):

for each pos in list
for pos in range(len(lst)):

find obj that should be there
min_pos = pos
for i in range(pos+1, len(lst)):
if lst[i] < lst[min_pos]:
min_pos = i

swap that obj into position pos
swap(lst, pos, min_pos)

Insertion Sort

def insertion_sort(lst):

for each obj in list
for pos in range(len(lst)):

move obj to correct position
curr_pos = pos
while curr_pos > 0 and

lst[curr_pos]<lst[curr_pos-1]:
swap(lst, curr_pos-1, curr_pos)
curr_pos = curr_pos - 1

Merge Sort
def merge_sort_helper(lst, start, end):

Base Case
if end-start < 2:

return

Recursive Case
middle = start + int((end-start) / 2)
merge_sort_helper(lst, start, middle)
merge_sort_helper(lst, middle, end)
merge(lst, start, end)
Which algorithm is better?

