
CS 51P October 30, 2019

Lecture 15: Nested Lists

Lists
• a list is an ordered set of elements:

• many ways to create a list including:

• a list is a sequence, so can index into, loop over, check for
membership, slice, etc

• operators: + and *

• lists are mutable

[3, 6, 2, 1]

a_list = [3, 6, 2, 1]
b_list = []
c_list = "a b c d".split()
d_list = open("temp.txt","r").readlines()

adding to a list
• a_list.extend(list)
• a_list.append(elem)
• a_list.insert(index, elem)

removing from a list
• del(a_list[slice])
• a_list.remove(elem)

• error if elem not in a_list
• a_list.pop()

• returns (and removes) a_list[-1]
• a_list.pop(index)

• returns (and removes) a_list[index]

modifying a list
• direct assignment

other
• min(a_list), max(a_list),

len(a_list)
• elem in a_list

– returns bool
• a_list.index(elem)

– returns int or error

Matrices
• Can think of lists as a one-dimensional matrix
• What if you want to use a two-dimensional matrix?
• Can create a list of lists aka a nested list!

Example
a_list = [[4, [True, False], 6, 8], [888, 999]]

if alist[0][1][0]:
print(alist[1][0])

else:
print(alist[1][1])

Example
• Define a function nested_total that takes a list of
lists of ints and returns the sum of all the values.

list = [[1,2], [3], [4,5,6]]
sum = nested_total(list)
print(sum)

21

Exercise
• Define a function nested_avg that takes a list of
lists of ints and returns a list with each sublist
averaged

list = [[1,2], [3], [4,5,6]]
list_avg = nested_avg(list)
print(list_avg)

[1.5, 3.0, 5.0]

Example

• write a function set_value that takes a nested list board and ints i,
j, n and updates the (i,j)th entry of board to be the value n

• write a function check_row_i that takes an int i and a nested list
board. The function should return True if and only if row i contains
each integer from 1 through 9 exactly once.

board = [[0,0,9,6,0,7,4,3,1],
[8,0,0,0,5,3,0,0,9],
[0,6,0,2,0,0,5,0,0],

...
[4,0,0,1,0,2,6,5,0]]

Exercise

• write a function check_column_i that takes an int i and a nested
list board. The function should return True if and only if column i
contains each integer from 1 through 9 exactly once.

• write a function check_block_ij that takes ints i and j and a nested
list board. The function should return True if and only if the 3x3 block
starting at row i, column j contains each integer from 1 through 9
exactly once

• write a function check_solution that takes a nested list board and
returns True if and only if board represents a correctly solved puzzle.

board = [[0,0,9,6,0,7,4,3,1],
[8,0,0,0,5,3,0,0,9],
[0,6,0,2,0,0,5,0,0],

...
[4,0,0,1,0,2,6,5,0]]

