Lecture 15: Nested Lists

CS 51P
October 30, 2019

Lists

- a list is an ordered set of elements:

$$
[3,6,2,1]
$$

- many ways to create a list including:

$$
\begin{aligned}
& \text { a_list }=[3,6,2,1] \\
& \text { b_list }=[] \\
& \text { c_list }=\text { "a b c d".split() } \\
& \text { d_list }=\text { open("temp.txt", "r").readlines () }
\end{aligned}
$$

- a list is a sequence, so can index into, loop over, check for membership, slice, etc
- operators: + and *
- lists are mutable

adding to a list

- a_list.extend(list)
- a_list.append(elem)
- a_list.insert(index, elem)

other

- min(a_list), max(a_list), len(a_list)
- elem in a_list
- returns bool
- a_list.index(elem)
- returns int or error

removing from a list

- del(a_list[slice])
- a_list.remove(elem)
- error if elem not in a_list
- a_list.pop()
- returns (and removes) a_list[-1]
- a_list.pop(index)
- returns (and removes) a_list[index]

modifying a list

- direct assignment

Matrices

- Can think of lists as a one-dimensional matrix
-What if you want to use a two-dimensional matrix?
- Can create a list of lists aka a nested list!

Example

```
a_list = [ [4, [True, False], 6, 8], [888, 999] ]
    if alist[0][1][0]:
        print(alist[1][0])
else:
    print(alist[1][1])
```


Example

- Define a function nested_total that takes a list of lists of ints and returns the sum of all the values.

```
list = [[1,2], [3], [4,5,6]]
sum = nested_total(list)
print(sum)
```


Exercise

- Define a function nested_avg that takes a list of lists of ints and returns a list with each sublist averaged

```
list = [[1,2], [3], [4,5,6]]
list_avg = nested_avg(list)
print(list_avg)
```

[1.5, 3.0, 5.0]

Example

LEVEL: Beginner

		9	6		7	4	3	1
8				5	3			9
	6		2			5		
		8	9					6
		2		4		7		5
					1			
			5	9	4	3		2
	2	7		3			1	
4			1		2	6	5	

$$
\begin{aligned}
\text { board }= & {[}
\end{aligned} \begin{aligned}
& {[0,0,9,6,0,7,4,3,1], } \\
& {[8,0,0,0,5,3,0,0,9], } \\
& {[0,6,0,2,0,0,5,0,0], } \\
& {[4,0,0,1,0,2,6,5,0]] }
\end{aligned}
$$

whw.dctech.com/sudoku/

- write a function set_value that takes a nested list board and ints i, j, n and updates the (i, j)th entry of board to be the value n
- write a function check_row_i that takes an int i and a nested list board. The function should return True if and only if row i contains each integer from 1 through 9 exactly once.

Exercise

LEVEL: Beginner

		9	6		7	4	3	1
8				5	3			9
	6		2			5		
		8	9					6
		2		4		7		5
					1			
			5	9	4	3		2
	2	7		3			1	
4			1		2	6	5	

$$
\begin{aligned}
& \text { board }=[[0,0,9,6,0,7,4,3,1] \text {, } \\
& \text { [8,0,0,0,5,3,0,0,9], } \\
& \text { [0,6,0,2,0,0,5,0,0], } \\
& [4,0,0,1,0,2,6,5,0]]
\end{aligned}
$$

whw.dctech.com/sudoku/

- write a function check_column_i that takes an int i and a nested list board. The function should return True if and only if column i contains each integer from 1 through 9 exactly once.
- write a function check_block_ij that takes ints i and jand a nested list board. The function should return True if and only if the 3×3 block starting at row i , column j contains each integer from 1 through 9 exactly once
- write a function check_solution that takes a nested list board and

