Lecture 11: Recursion

CS 51P
October 14, 2019

Recursion

Writing Recursive Functions

0) Come up with a recursive definition of your problem

- a _x is a _y_ plus _n_smaller _x_s, unless it is really small, in which case it is _z_

1) Define a base case:

- Some conditions when the function doesn't recursively call the function (the "really small" case)

2) Define a recursive case:

- Some conditions when the function recursively calls itself
- Make sure it calls itself with different (usually "smaller") arguments

3) Define the return value:

- Combine answers from recursive call(s) into answer for full problem

Review: Fibonacci Numbers

Fibonacci sequence: 011235813 ...

$$
F_{n}=\frac{\varphi^{n}-\psi^{n}}{\varphi-\psi}=\frac{\varphi^{n}-\psi^{n}}{\sqrt{5}}
$$

Where $\varphi=\frac{1+\sqrt{ } 5}{2}$ and $\psi=1-\varphi$

Fibonacci (Leonardo Pisano) 1170-1240?

Recursive definition:

$$
\begin{aligned}
& \mathrm{fib}(0)=0 \\
& \mathrm{fib}(1)=1 \quad \text { base cases } \\
& \mathrm{fib}(\mathrm{n})=\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2) \mathrm{n} \geq 2
\end{aligned}
$$

Exponentiation

$$
\cdot x^{n}=x \cdot x \cdot \ldots \cdot x
$$

Cryptography

996CB7BA 0EG0161B
G0030200 01208600
024 FG002 53D03C00
887525C1 01A07700
024 FGOO2 53D03C00
887525 Cl
4242434 E 3D4A6
$553 D 4553$
0031 ? 230
4 CC
21009
-B3EE8EF
)4143B75 4F571C8
157C659E C820EEO
D7F743D 9A36DD2
10800C8 9A54E07

Exponentiation

- $x^{n}=x \cdot x \cdot \ldots \cdot x$

OR

- $x^{n}=\left(x^{2}\right)^{\frac{n}{2}}$ (if n is even)
- $x^{n}=x \cdot\left(x^{2}\right)^{\frac{(n-1)}{2}}$ (if n is odd)

Turtle graphics

Recursive Graphics

Counting Triangles

Triangle Pyramid

