
CS 51P September 30, 2019

Lecture 5: Debugging and Testing

Announcements
• First exam next Monday (Checkpoint 1)

• Lots of office hours/mentor sessions this week
• Mentor sessions this weekend 2-4pm Saturday, 2:30-4:30 Sunday

in Edmunds 229
• One-on-one tutoring available through QSC
• Previous checkpoints available on Piazza

• A3 graded

• A4 released, due Friday

Common Types of Errors

• Syntax Errors: there is something wrong with the structure
of the program, and Python doesn't understand it

• Runtime Errors: something goes wrong while the program
is running

• Semantic Errors: the program runs, but it doesn't do what
you want it to do

Handling Syntax Errors

1. Find the bug

2. Do you see the problem?

1. If yes, fix it!

2. If no, try running through the list of common syntax bugs

3. If still no, check your class notes, discuss the problem abstractly

with a friend ("what's the right syntax for…"), or ask a

TA/instructor (it's ok to get help!)

Common Syntax Errors
• Misspelling a variable name or a function name
• Missing quotation marks around a string
• Mismatched parentheses or quotation marks
• Missing a colon at the end of an if/while/for statement
• Using = instead of ==
• Using a Python keyword as a variable name

Make sure you remembered to save your file
after making your changes!

Example
in = int(input("Pick a number\n"))

if in = 13:

print("I am also fond of the number 13!")

elif in > 13:

print("I am fond of the number 13, which is "

+ str(in-13) + " less than " + str(in)

else

print("I am fond of the number 13, which is "

+ str(13-in) + " more than " + str(in)

in2 = input("Do you like tea?)

while in2 != "yes" and != "no":

in2 = input("Please answer yes or no. Do you like tea?")

if in2 == "yes":

print("Great!")

else:

print("That's too bad.")

print("Bye!)

SyntaxError

SyntaxError

SyntaxError
SyntaxError

SyntaxError

SyntaxError

SyntaxError

SyntaxError

Handling Runtime Errors: Program Hangs
• You are probably in an infinite loop!
• Add print statements to figure out how far you got
• Add print statements to find line(s) that repeat over and

over

• Your program might also just be waiting for an input

Handling Runtime Errors: Exceptions
• NameError: Python doesn't recognize a (variable) name

• Find the bug!
• Did you forget quotation marks around a string?
• Did you misspell a variable name? Make a typo?
• Is the variable you are trying to use in scope? Use before define?

Scope Storing a value in a variable:
1. If there is a variable with that name

in the current function's stack frame,
store the value in that variable

2. Otherwise create a new variable in
the current function's stack frame
and store the value there

Using a variable:
1. Check for a local variable with that

name. If it exists, use the value
stored in that variable

2. Else if there exists a global variable
with that name, use the value stored
in that global variable

3. Otherwise get a NameError

fav = 13

def good_choice(num):
1 b = (num == fav)
2 return b

def main():
1 in_str = input()
2 fav = int(in_str)
3 if good_choice(fav):
4 print("yay")
5 else:
6 print("boo")

def print_example(s4,s5):
s1 = 3*s4
s2 = s4+s5
print(s1)
print(s2)
return s1+s2

s1 = '!'
s2 = '?'
print(s1)
s3 = print_example(s1,s2)
print(s2)
print(s3)
print(s4)

Exercise

Handling Runtime Errors: Exceptions
• NameError: Python doesn't recognize a (variable) name

• Find the bug!
• Did you forget quotation marks around a string?
• Did you misspell a variable name? Make a typo?
• Is the variable you are trying to use in scope? Use before define?

• TypeError: Python can't perform that operation/function on that
type
• Find the bug!
• Are the types that the error reports the type you expected?
• Add a print statement on the previous line and print out all the

variables/values on that line. Are they what you expect?

• ValueError: Python can't perform that operation/function on that
value
• Find the bug!
• Add a print statement on the previous line and print out all the

variables/values on that line. Are they what you expect?

Take a break

When your code runs…

Testing
• Try running your function with different values, called test

cases, and make sure it returns the right value

• Branch Testing (white-box testing)
• make sure that every line of code is executed by at least once
• for conditionals, try include a test case that makes the condition

evaluate to True and a test case that makes the condition evaluate to
False

• for loops, try to include test cases that make the program go through
the loop 0 times, 1 time, and lots of times

• Corner-Case Testing (black-box testing)
• include the "weird" values in your test cases
• e.g., for ints, include negative numbers and zero, as well as positive
• e.g., for strings, include the empty string

Testing in Python

• Create a new file called <program_name>_tester.py

• Import the functions you want to test
from demo08 import sum_even

• Using assert statements to test program behavior
assert <condition>

Example
demo08.py

def sum_even(start, end):
"""
Computes the sum of the
even numbers between <start>
and <end> (inclusive).
:param start: (int) one end

of range
:param end: (int) other end

of range
:return: (int) sum of evens
"""
for i in range(start, end):

if(i % 2 = 0):
sum = i

demo08_tester.py

from demo08 import sum_even

def main():
assert type(sum_even(1,5)) == int
assert sum_even(1,5) == 6
assert sum_even(1,6) == 12
assert sum_even(2,5) == 6
assert sum_even(2,6) == 12
assert sum_even(1,1) == 0
assert sum_even(2,2) == 2
assert sum_even(6,2) == 6

if __name__ == "__main__":
main()

Code Tracing
• Execute the program line by line by hand

• If you get the right answer by hand, add print statements
to determine where your code starts doing something
different

ERASE WHOLE FRAME

num = add_one(46)

add_one 1

n

return

46

None

x 47

2X

47

Rubber-Duck Debugging

Exercise
def move(steps, direction):
"""
Attempts to move the player <steps> steps in
direction <direction>

:param steps: (int) number of steps to move (may be
negative)

:param direction: (int) direction to move (a multiple
of 90)

:return: (int) number of steps successfully taken by
player (equal to steps if didn't hit a wall)

"""
if steps < 0:

steps = -1*steps
direction = direction + 180

direction = direction % 360
return forward_move(steps, direction)

Debugging…

Debugging…

