
CS 51P September 25, 2019

Lecture 7: Memory and the Stack

Bits
• a bit is a binary digit that can have two possible values

• can be physically represented with a two state device

Bits

Storing bits
• Static random access memory (SRAM):

stores each bit of data in a flip-flop, a
circuit with two stable states

• Dynamic Memory (DRAM): stores each
bit of data in a capacitor, which stores
energy in an electric field (or not)

• Magnetic Disk: regions of the platter are
magnetized with either N-S polarity or
S-N polarity

• Optical Disk: stores bits as tiny
indentations (pits) or not (lands) that
reflect light differently

• Flash Disk: electrons are stored in one of
two gates separated by oxide layers

Binary Numbers

4211
= 4 ⋅ 10& + 2 ⋅ 10) + 1 ⋅ 10* + 1 ⋅ 10+

= 4211

1011
= 1 ⋅ 2& + 0 ⋅ 2) + 1 ⋅ 2* + 1 ⋅ 2+

= 11

Exercise
• What (decimal) numbers are represented by the following

(binary) values

• 101111

• 110011

• 11111100011

Binary Numbers

ASCII characters

Program Instructions
Python Code

def example1(n):
x = n + 1
return x

Binary Representation

10001101 01000111 00000001
11000011

Bits Require Interpretation
01000011 01010011 00110101 00110001

might be interpreted as

• The integer 112952657710

• A floating point number close to 211.207779

• The string “CS51”

• A portion of an image or video

• A portion of code
• An address in memory

Information is Bits + Context

101001011110101
010101010111010
101010101010000
111110101010101
011101010101011
101010101011010
101010101011101
010010000000011
010101111101010
101010101010111
010101011101010
001010100000111
100011101010111
101010110100000
110011101110110
010000111010101
011110001100110
101000110000010
101011001110011
101011110110101

Memory
• memory is a sequence of
bytes

• different "sections" of
memory are used for
different purposes

• code section stores your
programs

• the stack is used to store
variables to keep track of
functions

Th
e

St
ac

k
co

de

Stack Frames
• each time a function is called, that function call
gets its own section of the stack, known as a
stack frame or function frame

function name instruction counter

parameter variables

local variables

return value

draw variables as named boxes

line number of next statement
in the function body to execute
initially first line of body

ERASE WHOLE FRAME

Example
def add_one(n):
1 x = n + 1
2 return x

num = add_one(46)

add_one 1

n

return

46

None

x 47

2X

47

num 47

Exercise

def foo(a, b):
1 x = a + b
2 y = 2 * b
3 return 2 * x + y

foo(2, 3)

Control Flow and Nested Functions

def square(n):
1 if n <= 0:
2 return 0
3 else:
4 return n**2

def sum_squares(n):
1 sum = 0
2 for i in range(n):
3 sum += square(i)
4 return sum

sum_squares(2)

Exercise
• get_pos_int()

• assume user enters
• hello
• 47

def is_pos_int(s):
1 if str.isdigit(s):
2 return int(s) > 0
3 else:
4 return False

def get_pos_int():
1 done = False
2 while not Done:
3 s = input()
4 done = is_pos_int(s)
5 return s

Global Variables
fav = 13

def good_choice(num):
1 b = (num == fav)
2 return b

good_choice 2

num

return

47

None

fav 13

b False

global variables are outside of
any stack frame. They are in a
different section of memory!

Scope • Storing a value in a variable:
• If there is a variable with that name

in the current function's stack frame,
store the value in that variable

• Otherwise create a new variable in
the current function's stack frame
and store the value there

• Using a variable
• Check for a local variable with that

name. If it exists, use the value
stored in that variable

• Else if there exists a global variable
with that name, use the value stored
in that global variable

• Otherwise get a NameError

fav = 13

def good_choice(num):
1 b = (num == fav)
2 return b

def main():
1 in_str = input()
2 fav = int(in_str)
3 if good_choice(fav):
4 print("yay")
5 else:
6 print("boo")

def print_example(s4,s5):
s1 = 3*s4
s2 = s4+s5
print(s1)
print(s2)
return s1+s2

s1 = '!'
s2 = '?'
print(s1)
s3 = print_example(s1,s2)
print(s2)
print(s3)
print(s4)

Exercise

