
CS 51P September 23, 2019

Lecture 6: Parameterized Functions



Review: Defining Functions
• Why?

• There's some useful operation that you want to do over and 
over and over

• Easier to read/understand
• Easier to modify/change/debug

• How?
def sum_squares():
num = int(input("pos int?\n"))
sum = 0
for i in range(1, num+1):
sum = sum + num**2

return num

header

body

return



def sum_squares():
num = int(input("pos int?\n"))
sum = 0
for i in range(1, num+1):
sum = sum + num**2

return num

sum = sum_squares()
print(sum)

# or

print(sum_squares())

Review: Calling Functions



Main functions
• By convention, the only 

code that goes in the body 
of a Python file is the two-
line program

• The rest of the program is 
defined in a function called 
main()

• (or in other functions!)

def sum_squares():
num = int(input("pos int?\n"))
sum = 0
for i in range(1, num+1):

sum = sum + num**2
return num

def main():
sum = sum_squares()
print(sum)

if __name__ == "__main__":
main()

if __name__ == "__main__":
main()



Boolean Return Values
• Functions can evaluate to a value of any type
• …So functions can be Boolean expressions
• …So functions can be conditions!

• We've actually seen this before 
• e.g., if str.isdigit(input_string):



Example
• Define a function called good_choice() that asks the user 

for a positive integer and evaluates to True if the user 
enters 13 and False if they enter anything else?

• We want to be able to use the function as follows: 

def main():
if good_choice():
print("yay")

else:
print("boo")



Exercise
def mystery():

x = input()
i = 0
m = 1
n = 0
for c in x:

if i == 0 and c == '-':
m = 2

elif c == '.':
n = n+1

elif not str.isdigit(c):
return False

i = i + 1
return i >= m and n <= 1

• What does the function 
mystery() do? 

• What would be better 
names for the variables 
x, i, m, and n?



What if you wanted your good_choice function to 
be able to check for numbers other than 13?



Parameterized Functions
• Functions can be defined with parameters, special 

variables that can be used inside the function and that are 
defined when the function is called

• Defining a parameterized function:

• Calling a parameterized function:

def good_choice(n):

x = int(input("pos int?\n"))

return x == n

parameter 

b = good_choice(13)
argument 



Example
• Define a function called square that takes a number n 

(an int or float) as a parameter and returns that 
number squared

• Define a function called sum_squares that takes a 
number n (an int). If the number is a positive int, it 
returns the sum of the squares 1,…, n. Otherwise it 
returns 0.  



Exercise
• Define a function is_pos_int that takes a string and

returns True if the string represents an integer value and 
False otherwise

• Write a main function that uses the functions get_pos_int
and sum_squares to get a positive integer from the user 
and then print the sum of the squares from 1 to that 
number



Multi-parameter Functions
• Define a function called area that takes two numbers l 

and w (an int or float) as parameters and returns the 
area of a rectangle with length l and width w

• Note: parameters can also be optional!



Docstrings
• "A docstring is a string literal that occurs as the first statement in 

a module, function, class, or method definition." 
• every file should start at the top with a multiline comment that 

gives the author, date, description of what the code does
• every function header should be followed by a multiline 

comment that describes what the function does, specifies any 
input parameters, and specifies the return type/value  

def square(n):
"""
Computes the square of n
:param n (int or float): a number
:return (int or float): n*n
"""
return n * n


