
CS 51P September 18, 2018

Lecture 5: Functions

Review: Expressions
• Values

• 47
• "hello, world!\n"
• True

• Variables
• x
• i
• char

• Operations on values
or variables
• 1 * 2 * 3
• "hello" + "world
• x % 2

• Function calls
• int("32")
• print("hello, world")
• str.isdigit("12345678")

Functions
• A function is a named sequence of instructions that
performs some useful operation

• When you call a function, the sequence of
instructions executes.

• A function call is an expression (it evaluates to a
value)

• When should you define a function?
• How can you define your own functions?
• How do you use (call) your own functions?

Defining Functions
• Why?

• There's some useful operation that you want to do over and
over and over

• Easier to read/understand
• Easier to modify/change/debug

• How?

def print_logo():
s1 = (8*'+')+'\n'
s2 = '++ ** ++\n'
print(s1+s2+s2+s1)

header

body

++++++++
++ ** ++
++ ** ++
++++++++

def print_logo():
s1 = (8*'+')+'\n'
s2 = '++ ** ++\n'
print(s1+s2+s2+s1)

print("Here's my company logo:")
print_logo()
print("I can easily print it as many times"

+ "as I need to")
print_logo()

Calling Functions

9::::=======
|::::=======
|===========
|===========
|
|
|

Exercise: Defining a Function
• Define a function print_flag() that prints the

following image:

• Write a program that asks the user for a positive integer
and then prints that number of flags

Function Evaluation
• Functions calls are expressions, i.e. they evaluate to a

value
• int("47") evaluates to 47
• str.isdigit("hello") evaluates to False
• input() evaluates to the string the user enters

• We can store the value that an expression evaluates to in
a variable
• num = int("47")
• is_pos_int = str.isdigit("hello")
• input_str = input()

• What value does the expression print_flag() evaluate to?

Return Values
• keyword return defines a value for the function to

evaluate to

• function immediately terminates ("returns") when a return
statement is executed

• if a function terminates without executing a return statement,
it evaluates to the default value None (type is NoneType)

def one():
return 1

print(one())
three = 2*one()+one()

Example
• Define a function get_string_with_upper() that repeatedly

asks the user for a string until the user enters a string with
at least one upper case letter and then returns that string.

• Define a function get_string_with_2_upper() that gets two
strings from the user, each of which must contain at least
one upper case letter, and then returns the concatenation
of those two strings.

• Write a program that calls get_string_with_2_upper and
prints the value that function evaluates to.

Exercise
• Define a function get_pos_int() that repeatedly asks the

user for an input until the user enters a positive integer
and then returns that number as an int.

• Write a program that gets a positive integer from the user
(using get_pos_int()) and then prints that number of flags
(using print_flag())

