
CS 181W Fall 2022

Lecture 13: Token-Based Authentication

Recall: Authentication of humans
• Something you know

secret information (e.g., a password)
• Something you are

biometrics (e.g., fingerprints)
• Something you have

possession of a physical device (e.g., a particular phone)

Authentication tokens

Fixed codes (Keyless Entry)

• Token stores a secret value id_T
• Lock stores list of authorized ids
• To enter: Token->Lock: id_T

• Attack: replay: thief sits in car nearby, records serial number,
programs another token with same number, steals car

• Attack: brute force: serial numbers were 16 bits, devices could
search through that space in under an hour for a single car (and in
a whole parking lot, could unlock some car in under a minute)

• Attack: insider: serial numbers typically show up on many forms
related to car, so mechanic, DMV, dealer's business office, etc.
must be trusted

Fixed codes (RFIDs)

• Token stores a secret value id_T
• Lock stores list of authorized ids
• To enter: Token->Lock: id_T

• Attack: replay: thief sits nearby, records serial number,
programs another token with same number, authenticates

• Attack: privacy: adversary tracks token usage across
system and learns user attributes and/or behaviors

One-Time Passwords
• OTP may be deemed valid only once (the first time)
• Adversary cannot predict future OTPs, even with

complete knowledge of what passwords have already
been used

“Rolling” codes

• Token stores: id_T, sk_T, n
• Lock stores info for all authorized ids
• To enter: Token->Lock: id_T, Hash(id_T, n, sk_T)
• Both Token and Lock increment n after each authentication

• Problem: desynchronization of nonce

5AVR411 [APPLICATION NOTE]
2600E–AVR–07/15

There are numerous algorithms available to use for generating the MAC, but for various reasons we have chosen the
Advanced Encryption Standard (AES) algorithm, which is a symmetric block cipher. The AES algorithm supports key sizes of
128, 192 and 256 bits. Its use as a MAC generator is discussed further under theheading Section 2.1.1 “Rolling Windows” on
page 5.

Figure 2-3. Secure System with all Four Goals Satisfied

2.1.1 Rolling Windows
The concept of simply ignoring messages having old sequential numbers leaves one problem: What if the counter value
overflows and wraps back to 0? This section describes a solution.
Handling the sequential counter is best described by two examples, given in Figure 2-4. The first example shows a situation
where the last received valid message had a counter value A. As there is always the possibility that the transmitter has been
activated a number of times outside the receiver's range, the receiver must accept values up to some limit, labeled C in the
figure. The simple approach of accepting all values larger than the last received value won't work, as is apparent in the
second example where point A is close to the upper end of the counter value range. The dark segment from point A to C
shows the window of acceptance for counter values. Point B is an example of a value that would be accepted while point D
is a value that would be rejected. When a value is accepted, the window starting point moves to that point.

Figure 2-4. Rolling Window of Acceptance for Counter Values

This scheme ensures that old messages are never accepted unless the head of the rolling window has reached the old
counter values. By choosing a large enough counter span and limiting the window size itself, this scheme effectively
prevents replay attacks with old messages.

Secret key

Ser.

Message:

Cmd MACSeq.
Transmitter

Receiver

Unique serial
number

Sequential
counter

List of last used
counter values

List of accepted
transmitter

List of secret keys

Secret keySecret key

Ser. CmdSeq.

Example 1

A - Value from last valid message C - End of window

B - Accepted counter values D - Rejected counter values

Example 2
0

...
n-2 n-1 1 ...

D

A

C B

0

...
n-2 n-1 1 ...

D

A C
B

Hacking Rolling Codes

• Token stores: id_T, sk_T
• Lock stores info for all authorized ids
• To enter: Token->Lock: id_T, Hash(id_T, time, sk_T)

• 30-60 second valid window

Time-based One-Time Password

Challenge-based OTPs
• Token stores: id_T, sk_T
• Lock stores info for all authorized ids
• To enter:

1. Token->Lock: I want to authenticate
2. Lock->Token: n (new, randomly chosen number)
3. Token->Lock: id_T, Hash(id_T, n, sk_T)

Signature-based OTPs
• Token stores: id_T, sk_T
• Lock stores ids, public keys for all authorized ids
• To enter:

1. User->Lock: I want to authenticate
2. Lock->Token: auth_details (time, location, IP, etc)
3. Token->User: auth_details
4. (if yes) Token->Lock: id_T, Sign(auth_details, sk_T)

Grey
• Smartphone based access-control
system

• Used to open doors in the Carnegie
Mellon CIC building

• Allows users to grant access to their
doors remotely

Data collection
▪ Year long interview study

▪ Recorded 30 hours of interviews with
Grey users

▪ System was actively used: 19 users x
12 accesses per week

L. Bauer, L. F. Cranor, M. K. Reiter, and K. Vaniea. Lessons Learned from the Deployment of a Smartphone-
Based Access-Control System. SOUPS 2007. http://cups.cs.cmu.edu/soups/2007/proceedings/p64_bauer.pdf

Users complained about speed

▪ Users said Grey was slow

▪ But Grey was as fast as keys

▪ Videotaped a door to better
understand how doors are
opened differently with Grey
and keys

Similar average access times

Get
keys

3.6 sec 5.4 sec

Stop in
front of
door

Door
opene
d

Total
14.7
sec

5.7 sec

Door
Closed

Door
Closed

8.4 sec 2.9 sec 3.8 sec

Stop in
front of
door

Get
phone

Door
opened

Total
15.1
sec

“I find myself standing
outside and everybody
inside is looking at me
standing outside while I am
trying to futz with my phone
and open the stupid door.”

Nobody
wants to
have to
reboot their
door

DOOR

Unanticipated uses
can bolster
acceptance

Convenience always wins

Comparing 2FA Methods

▪ SMS code
▪ TOTP (Google Auth)
▪ pre-generated codes
▪ Duo Push
▪ U2F security keys

Ken Reese, Trevor Smith, Jonathan Dutson, Jonathan Armknecht, Jacob Cameron, and Kent Seamons. A
Usability Study of Five Two-Factor Authentication Methods. SOUPS 2019.
https://www.usenix.org/system/files/soups2019-reese.pdf

In person/Remote study
Between subjects
n=72

Comparing 2FA Methods
Time to Login Usability Score (SUS)

Comparing 2FA Methods
“In my opinion, it may be a little obsessive for everything, but
for banking it’s something that I actually do want some
authentication. I almost wish that it was a requirement"

“Honestly, once I’m home I kind of just set my phone down
and forget where I put it sometimes, so that was a little bit
hard ...I needed to go find my phone and pull up the app.”

“I guess maybe because it’s that I don’t have anything to
protect. . . I’m at a stage in my life where nothing I own is
that valuable"

[about TOTP] “I have to type in these numbers so fast or else
it’s going to go away.”

Observing 2FA in the wild

▪ Log records containing over over one million
authentication attempts from over 13,000 users
between September 2016 - July 2017

▪ Survey 1-3 weeks before mandatory (n = 1,251)
▪ Survey 3 months after mandatory (n = 796)

Jessica Colnago, Summer Devlin*, Maggie Oates, Chelse Swoopes, Lujo Bauer, Lorrie Cranor, Nicolas Christin.
“It’s not actually that horrible”: Exploring Adoption of Two-Factor Authentication at a University. CHI 2018.

Observing 2FA in the wild

Observing 2FA in the wild

Our Diary Study

Most common:
• Sakai (15)
• VPN (6)
• Others (course sites,

zoom, college portal,
etc)

• 1 failed (Sakai down)

Remote/online
Diary study
n = 29

Token-based Authentication

