Lecture 11: Passwords (cont'd)

CS 181W

Fall 2022

Recall: Authentication of humans

Something you are

biometrics (e.g., fingerprints)

Something you know

secret information (e.g., a password)

Something you have

possession of a physical device (e.g., a particular phone)

Recall: Password lifecycle

- 1. Create: user chooses password
- 2. Store: system stores password with user identifier
- **3. Use:** user supplies password to authenticate
- Change/recover/reset: user wants or needs to change password

Recall: How to get better passwords

Password perceptions study

Ur et al. Do users' perceptions of password security match reality? CHI 2016.

Which is more secure?

ieatkale88

Study participants' perceptions

iloveyou88

Which is more secure?

brooklyn16

brooklynqy

Study participants' perceptions

brooklyn16

Which is more secure?

sponge01bob

spongebob01

Study participants' perceptions

spongebob01

Which is more secure?

1qaz2wsx3edc

thefirstkiss

Study participants' perceptions

thefirstkiss

Participants were not all wrong

- Knew to avoid common words and names
 - But didn't recognize frequently used phrases
- Knew digits and symbols added strength
 - But thought they provided more strength than they do
- Perception of attackers varied wildly
 - Many unaware of large-scale attacks

password michael iloveyou

password!
michael2015

Data-driven password meter

General Feedback

Detailed Feedback

reate Your Password		
Username blase	Your password could be better.	
	Don't use dictionary words	<u>(Why?)</u>
Password	Capitalize a letter in the	(Why?)
	middle	
Show Password & Detailed Feedback 🗌	Move symbols and digits elsewhere in your password	<u>(Why?)</u>
Confirm Password	See Your Password With Our Improvements	
Continue	How to make strong passwords	

Username	Your password could be better.	
blase Password	 Don't use dictionary words (password and Example) 	Why?
Examplepassword% Show Password & Detailed Feedback @	Capitalize a letter in the middle, rather than the first character	(Why?)
Confirm Password	Move your symbols earlier, frather than just at the end	Why?
Continue	A better choice: E?amplepasswor%d How to make strong passwords	

Ur et al. Design and Evaluation of a Data-Driven Password Meter. CHI 2017

Data-driven meter improves strength

Detailed Feedback Matters

Other factors less critical

How valid are online studies?

Passwords for an entire university

- 25k+ CMU faculty, staff, and student accounts
 - Plus 17,104 deactivated accounts
- Single-sign-on for email, financial, grades, registration, health, etc.
- Password requirements:
 - Minimum 8 characters
 - Upper, lower, digit, symbol
 - Dictionary check (241,497 words)

- 7 months of authentication logs
- Survey after password change (n=694)

M.L. Mazurek, S. Komanduri, T. Vidas, L. Bauer, N. Christin, L.F. Cranor, P.G. Kelley, R. Shay, and B. Ur. Measuring Password Guessability for an Entire University. ACM CCS 2013.

Comparing leaked/hashed passwords

Leaked hashed/cracked: Very easy to guess

Comparing leaked plaintext passwords

Leaked plaintext: RockYou close to CMU, others much tougher

Comparing leaked passwords

Online studies: Closest across all metrics

Password lifecycle

- 1. Create: user chooses password
- 2. Store: system stores password with user identifier
- **3. Use:** user supplies password to authenticate
- Change/recover/reset: user wants or needs to change password

Password change

Motivated by...

- Attacker learns password
- System forces password expiration
- User forgets password (maybe just recover password)

Does changing your password regularly make accounts more secure?

Testing this theory at UNC

- Mandatory password change every 3 months
- Researchers obtained 4-15 hashed defunct passwords to each account
- Cracked >1 non-last password for 7,752 accounts

Knowing old password can we predict the new one?

Predictable transformations

Predictable transformations

- **Capitalization:** $tarheels#1 \rightarrow tArheels#1$
 - **Duplication:** tarheels#1 \rightarrow tarheels#11
 - **Substitution:** tarheels#1 \rightarrow tarheels#2
 - **Insertion:** $tarheels#1 \rightarrow tarheels#12$
- **Keyboard transform:** tarheels#1 \rightarrow tarheels#!

Date: tarheel#0510 \rightarrow tarheel#0810

Results

- Online attack
 - 17% of accounts cracked in <5 guesses
- Offline attack
 - 41% of accounts cracked within 3 seconds

Survey evidence

- Frequent password expiry → users create weaker passwords (Adams & Sasse, 1999)
- Annoyed at password change → users create weaker passwords (Mazurek et al., 2013)

******** When is the last time you **changed** yours?

New guidance

Our research was cited by NIST in June 2017 *NIST Special Publication 800-63B Digital Identity Guidelines*

- Emphasis on length rather than complexity
- Don't require periodic password changes

Password change

Motivated by...

Attacker learns password

- System forces password expiration -

User forgets password (maybe just recover password)

Change mechanisms

- Tend to be more vulnerable than the rest of the authentication system
 - Not designed or tested as well
 - Have to solve the authentication problem without the benefit of a password
- Two common mechanisms:
 - Security questions
 - Emailed passwords

Security questions

- Something you know: attributes of identity established at enrollment
- Pro: you are unlikely to forget answers
- Assumes: attacker is unlikely to be able to answer questions
- Con: might not resist targeted attacks
- Con: linking is a problem; same answers re-used in many systems

Secret questions

- How secure are secret questions against random guessing?
- Can acquaintances guess secret questions?
- Can users remember their own secret questions?

Stuart Schechter, A. J. Bernheim Brush, and Serge Egelman. It's No Secret: Measuring the Security and Reliability of Authentication via 'Secret' Questions. IEEE Security and Privacy 2009.

130 participants, recruited in pairs

- Move to room separate from partner
- Answer personal questions for top four webmail services
- Guess partner's answers to personal questions
- Attempt to recall answers to own personal questions
- Second chance to guess partner's questions using online research
- 3-6 months later: Attempt to recall answer to own questions in online survey

AOL Questions

- What is your pet's name?
- Where were you born?
- What is your favorite restaurant?
- What is the name of your school?
- Who is your favorite singer?
- What is your favorite town?

- What is your favorite song?
- What is your favorite film?
- What is your favorite book?
- Where was your first job?
- Where did you grow up?

Google Questions

- What is your primary frequent flier number?
- What is your library card number?
- What was your first phone number?
- What was your first teacher's name?

Microsoft Questions

- Mother's birthplace
- Best childhood friend
- Favorite teacher
- Favorite historical person
- Grandfather's occupation

The efficient way to do email

Yahoo! Questions

- Where did you meet your spouse?
- What was the name of your first school?
- Who was your childhood hero?
- What is your favorite pastime?
- What is your favorite sports team?

- What is your father's middle name?
- What was your high school mascot?
- What make was your first car or bike?
- What is your pet's name?

Findings

- Many bogus answers (e.g., 13% for hotmail)
- After 3-6 months, 20% of answers forgotten
- Answer statistically guessable if in top 5 guesses for that question from other participants (excluding partner)
 - 13% total statistically guessable
- 17-28% guessed by acquaintance

NIST recommendations

Don't use secret questions

Emailed password

- new temporary password
 - one-time password: valid for single use only, maybe limited duration
- Assumes: attacker is unlikely to have compromised your email account
- Assumes: email service correctly authenticates you

Password lifecycle

- 1. Create: user chooses password
- 2. Store: system stores password with user identifier
- **3. Use:** user supplies password to authenticate
- Change/recover/reset: user wants or needs to change password

Beyond passwords?

- Passwords are tolerated or hated by users
- Passwords are plagued by security problems
- Can we do better?
- Criteria:
 - Security
 - Usability
 - Deployability

Schemes to replace passwords

- Graphical
- Cognitive
- Visual cryptography
- Password managers
- Single Sign-On
- Two-factor authentication

Passwords are here to stay, for now

- Password Readings
- Project IRB Proposal

Something you know

