Lecture 10: Password-Based Authentication

Classes of Security Countermeasures

- Authentication: mechanisms that bind principals to actions
- Authorization: mechanisms that govern whether actions are permitted
- Audit: mechanisms that record and review actions

Classes of Principals

- Authentication: mechanisms that bind principals to actions
- Authenticating Machines
- Authenticating Programs
- Authenticating Humans

Authentication of humans

- Something you are
biometrics (e.g., fingerprints)
- Something you know
secret information (e.g., a password)
- Something you have possession of a physical device (e.g., a particular phone)

Exercise: Authentication Mechanisms

- What are different ways you have authenticated yourself to a machine? How should we classify them?

Something you are

Something you know
Something you have

Multi-factor Authentication

- Two-factor authentication: authenticate based on two independent methods
- ATM card plus PIN
- password plus registered mobile phone
- Multi-factor authentication: two or more independent methods
- Best to combine separate categories, not reuse categories
- non-example: requiring two passwords from a single human: arguably not independent
- non-example: requiring single password from each of two humans: authenticates two humans then makes authorization decision

PASSWORDS

Password lifecycle

1. Create: user chooses password
2. Store: system stores password with user identifier
3. Use: user supplies password to authenticate
4. Change/recover/reset: user wants or needs to change password

2. PASSWORD STORAGE

Password Storage

- Passwords typically stored in a file or database indexed by username
- Strawman idea: store passwords in plaintext
- requires perfect authorization mechanisms
- requires trusted system administrators
- ...

Threat Model: Offline Attack

- Adversary can read files from disk

Hackers steal 46 million Animal Jam user

Cafiat ALERT: 1,583,193 Breached Accounts At VPN Provider ne ActMobile
it Wa: One of the biggest Android VPNs hacked? Data of 21 million Grat users from 3 Android VPNs put for sale

Password Storage

- Want: a function f such that...

1. easy to compute and store $f(p)$ for a password p
2. hard given disclosed $f(p)$ for attacker to recover p
3. hard to trick system by finding password q s.t. q != p yet $f(p)=$ f(q)

- Encryption would work, but then the key has to live somewhere
- Cryptographic hash functions suffice!
- one-way property gives (1) and (2)
- collision resistance gives (3)

Hashed passwords

- Each user has:
- username uid
- password p
- System stores: uid, $\mathrm{H}(\mathrm{p})$

Exercise: Hashed Passwords

- Consider an alternative authentication protocol where user sends uid, $H(p)$ and the service compares $H(p)$ to the stored hash. Would this be more or less secure than sending the plaintext password? Why?

Hashed passwords are still vulnerable

Assume: attacker does learn password file (offline guessing attack)

- Hard to invert: i.e., given $\mathrm{H}(\mathrm{p})$ to compute p
- But what if attacker didn't care about inverting hash on arbitrary inputs?
- i.e., only have to succeed on a small set of p's: p1, p2, ..., pn
- Then attacker could build a dictionary...

Dictionary attacks

Dictionary：

－p1，H（p1）
－p2，H（p2）
－pn，H（pn）

0	711，477，622	Onliner Spambot	（Vangainders	855，249	Manga Traders accounts
		accounts \ominus	Pemanelago	830，155	Pokémon Negro accounts
	593，427，119	Exploit．In accounts（3）		819，478	Warframe accounts
睹	457，962，538	Anti Public Combo List accounts（ ）	V10	800,157 790,724	Onverse accounts Brazzers accounts
0	393，430，309	River City Media Spam List accounts -		790,724 777,387	Brazzers accounts Black Hat World accounts
memyspace359，420，698		MySpace accounts	＊	776，125	Abandonia accounts
		NetEase accounts（\％）	Avorimere	745，355	Android Forums accounts
	164，611，595	Linkedln accounts	WHETHR	738，556	WildStar accounts
	152，445，165	Adobe accounts	MALL．CZ	735，405	MALL．cz accounts
	112，005，531	Badoo accounts（（ ）	Pusioncoim	709，926	PoliceOne accounts
\vee	105，059，554	B2B USA Businesses accounts \ominus		707，432	Programming Forums accounts
15	93，338，602	VK accounts	－${ }_{\text {spu }}$	699，793	mSpy accounts
YOUKV Pam6nep／ dailymotion	91，890，110	Youku accounts	Ocerancrave	660，305	CrackingForum accounts
	91，436，280	Rambler accounts	Poke Eip	657，001	Pokébip accounts
	85，176，234	Dailymotion accounts	$\dot{*}$	648，231	Domino＇s accounts
画	80，115，532	2，844 Separate Data	業	637，340	DaFont accounts
		Breaches accounts（3）	＊	620，677	Final Fantasy Shrine
tumblr．	68，648，009	Dropbox accounts			accounts
	：65，469，298	tumblr accounts	D	616，882	Comcast accounts

－Dictionary attack：lookup $\mathrm{H}(\mathrm{p})$ in dictionary to find p

Salted hashed passwords

- Vulnerability: one dictionary suffices to attack every user
- Vulnerability: passwords chosen from small space
- Countermeasure: include a unique system-chosen nonce as part of each user's password

Salted hashed passwords

- Each user has:
- username uid
- unique salt s
- password p
- System stores: uid, s, H(s, p)

3. PASSWORD USAGE

Authenticating to a remote server

- Each user has:
- username uid
- unique salt s
- password p
- System stores: uid, s, H(s, p)

1. Hu->L: uid, p
2. L and S: establish secure channel
3. L->S: uid, p
4. $\mathrm{S}:$ let $\mathrm{h}=$ stored hashed password for uid;
let $s=$ stored salt for uid;
if $h=H(s, p)$
then uid is authenticated

Threat Model: Online Attack

- Adversary can interact with the server as a user

Sign In

Enter Online ID:

$\stackrel{\text { Cl }}{ }$ Save this onlineID (How does this work?
Enter Passcode:

$(4 \cdot 12$ numbers and/or letters)

Sign In
Reset passcode
Forgot or need help with your ID?

Not using Online Banking?
Enroll now
for Online Banking "
Learn more
about Online Barking 》
Service Acreement "
Pay By Phone user's quide "

Goto Online Banking for
a state other than California

In Secure Area
U55A
Home. Locations. Contact Us. Help \cdot Sign in. Site Ma
About the Bank. In the Community - Finance Tools \& Planning. Privacy \& Security
Bank of America, N.A. Member FDIC. Equal Housing Lender ©
© 2010 Bank of America Corporation. All rights reserved.

When authentication fails

- Guiding principle: the system might be under attack, so don't make the attacker's job any easier
- Don't leak valid usernames:
- Prompt for username and password in parallel
- Don't reveal which was bad
- Record failed attempts and review
- Perhaps in automated way by administrators
- Perhaps manually by user at next successful login
- Lock account after too many attempts
- Rate limit login

Rate limiting

- Vulnerability: hashes are easy to compute
- Countermeasure: hash functions that are slow to compute
- Slow hash wouldn't bother user: delay in logging hardly noticeable
- But would bother attacker constructing dictionary: delay multiplied by number of entries
- Ideally, enough to make constructing a large dictionary prohibitively expensive
- Examples: bcrypt, scrypt, Argon2,...

Slowing down fast hashes

- Given a fast hash function...
- Slow it down by iterating it many times:
z1 $=\mathrm{H}(\mathrm{p})$;
z2 $=\mathrm{H}(\mathrm{p}, \mathrm{z} 1)$;
z1000 = H(p, z999);
output z1 XOR z2 XOR ... XOR z1000
- Number of iterations is a parameter to control slowdown
- originally thousands
- current thinking is 10 s of thousands
- Aka key stretching

Password vulnerabilities

- Shoulder surfing attacks
- Online attacks
- Offline attacks

Attackers exploit password reuse

CRACKED PASSWORDS

1. PASSWORD CREATION

Strong passwords

- How to characterize strength?
- One Approach: Difficulty to brute force-"strength" or "security level"
- if $2^{\wedge} X$ guesses required, strength is X
- Suppose passwords are L characters long from an alphabet of N characters
- Then N^L possible passwords
- Solve for X in $2^{\wedge} \mathrm{X}=\mathrm{N}^{\wedge} \mathrm{L}$
- Get $X=L \log _{2} N$
- This X is aka entropy of password
- Assuming every password is equally likely, X is the Shannon entropy of the probability distribution (cf. Information Theory)

Exercise: Entropy of passwords

- Option A: 8 character passwords chosen uniformly at random from 26 character alphabet
- Option B: 1 word chosen at random from entire vocabulary
- average high-school graduate: 50k word vocabulary

Exercise: Entropy of passwords

- Option A: 8 character passwords chosen uniformly at random from 26 character alphabet
- entropy of $8 \log _{2} 26 \approx 37$ bits
- but that means abcdefgh equally likely as ifhslgqz
- Option B: 1 word chosen at random from entire vocabulary
- average high-school graduate: 50k word vocabulary
- entropy of $\log _{2} 50 \mathrm{k} \approx 16$ bits
- but that assumes all words are equally likely

Where can you get lots of passwords

 to study?- Real passwords
- Stolen passwords
- Surveys
- Legitimate access to actual passwords
- Passwords created for experiments
- Lab studies
- Online studies

Dumb attacker aaaaaaaa

aaaaaaab
aaaaaaac
aaaaaaad
aaaaaaae

Smart attacker 123456789
password
iloveyou
princess
12345678

Password Policies

- Problem: guide users into choosing strong passwords
- Solution: password policies are rules for composing passwords
- e.g., must have at least one number and one punctuation symbol and one upper case letter

CREATE YOUR PASSWORD *
Show

```
Your password must
O Be at least 9 characters
Include an uppercase letter
O Include a lowercase letter
O Include a number
Not start or end with a space
```


Entropy estimation

- Entropy estimates [NIST 2006 based on experiments by Shannon]:

- (assuming English and use of 94 characters from keyboard)
- $1^{\text {st }}$ character: 4 bits
- next 7 characters: 2 bits per character
- characters 9..20: 1.5 bits per character
- characters 21+: 1 bit per character
- user forced to use lower \& upper case and non-alphabetics: flat bonus of 6 bits
- prohibition of passwords found in a 50k word dictionary: 0 to 6 bits, depending on password length

Entropy estimation

"Unfortunately, we do not have much data on the passwords users choose under particular rules.... NIST would like to obtain more data on the passwords users actually choose, but ... system administrators are understandably reluctant to reveal password data to others."

Guideline
Recommendations of the
Rational Institute of
Standards and Technology
William E. Burr

Donua F. Dodson
Elaine M. Newton
Ray A. Perlner
W. Timothy Polk

Sarbari Gupta
Emad A. Nabbu

INFORMATION SECURITY

Computer Security Division
Information Technolosy Information T Technology Laboratory
Nation I I It stitute of STandards and Technology Gaithersburg. MD 20899-8930

December 2011


```
Introduction | Dashboard | Status | Account Settings
```


Mechanical Turk is a marketplace for work.

We give businesses and developers access to an on-demand, scalable workforce.
Workers select from thousands of tasks and work whenever it's convenient.

476,446 HITs available. View them now.

Make Money
 by working on HITs

HITs - Human Intelligence Tasks - are individual tasks that you work on. Find HITs now.
As a Mechanical Turk Worker you:

- Can work from home
- Choose your own work hours
- Get paid for doing good work

or learn more about being a Worker

Get Results
 from Mechanical Turk Workers

Ask workers to complete HITs - Human Intelligence Tasks - and get results using Mechanical Turk. Register Now

As a Mechanical Turk Requester you:

- Have access to a global, on-demand, 24×7 workforce
- Get thousands of HITs completed in minutes
- Pay only when you're satisfied with the results

Participant tasks

- Create password under a randomly assigned condition
- Take a survey
- Recall password
- Return 2 days later to recall password and take survey

Choose a password:
 Re-enter your password:

Password policies

Policy	Example password
Basic8	password
Dictionary8	sapsword
Comprehensive8	sapsword1!
Basic16	passwordpassword

S. Komanduri, R. Shay, P.G. Kelley, M.L. Mazurek, L. Bauer, N. Christin, L.F. Cranor, and S. Egelman. Of passwords and people: Measuring the effect of password-composition policies. CHI 2011.

Password strength metric

Guessability

Estimate of how many guesses a sophisticated attacker will need to guess a password

Password	Guess number
12345678	4
Password178	1.4 x 10^{6}
jn\%fKXsl!8@Df	Beyond cutoff

Password policy strength

We all like to use the same symbols

Usability metrics

- Creation attempts and time
- Recall attempts
- Reported sentiment
- Write-down rate
- Study drop-out rate

Password policy usability

Creating a password
for this study was annoying

Do password meters help?

Password Strength Fair

Conditions with visual differences

Type new password:
Baseline meter

Three-segment

Green

Tiny

Huge

No suggestions

Text-only
use|
8-character minimum; case sensitive

Bad. Consider adding a digit or making your password longer.

Bad. Consider adding a digit or making your password longer.

Bad. Consider adding a digit or making your password longer.

Bad. Consider adding a digit or making your password longer.

Bad. Consider adding a digit or making your password longer

Bad.

Bad. Consider adding a digit or making your password longer.

Conditions with visual differences

Type new password:
Baseline meter

Three-segment

Green

Tiny

Huge

No suggestions

Text-only
usen
8-character minimum; case sensitive

Bad. Consider adding a digit or making your password longer.

Bad. Consider adding a digit or making your password longer.

Bad. Consider adding a digit or making your password longer.

Bad. Consider adding a digit or making your password longer.

Bad. Consider adding a digit or making your password longer.

Bad.

Bad. Consider adding a digit or making your password longer.

Conditions with visual differences

Type new password:
Baseline meter

Three-segment

Green

Tiny

Huge

No suggestions

Text-only
usenlX|
8-character minimum; case sensitive

Fair. Consider adding a digit or making your password longer

Fair. Consider adding a digit or making your password longer

Fair. Consider adding a digit or making your password longer.

Fair. Consider adding a digit or making your password longer.

Fair. Consider adding a digit or making your password longer

Fair.

Fair. Consider adding a digit or making your password longer

Conditions with visual differences

Type new password:
Baseline meter

Three-segment

Green

Tiny

Huge

No suggestions

Text-only

usen|X\$

8-character minimum; case sensitive
Good. Consider adding a digit or making your password longer.

Good. Consider adding a digit or making your password longer.

Good. Consider adding a digit or making your password longer.

Good. Consider adding a digit or making your password longer.

Good. Consider adding a digit or making your password longer.

Good.

Good. Consider adding a digit or making your password longer.

Conditions with visual differences

Type new password:	usenl \times \$e5
	8 -character minimum; case sensitive
Baseline meter	Excellent!
Three-segment	Excellent!
Green	Excellent!
Tiny	Excellent!
Huge	Excellent!
No suggestions	Excellent!
Text-only	Excellent!

Conditions with visual differences

Type new password:	usenl \times \$e5
	8 -character minimum; case sensitive
Baseline meter	Excellent!
Three-segment	Excellent!
Green	Excellent!
Tiny	Excellent!
Huge	Excellent!
No suggestions	Excellent!
Text-only	Excellent!

Conditions with scoring differences

Type new password:
Baseline meter

Half-score

One-third-score

Nudge-Basic16

Nudge-Comprehensive8

8-character minimum; case sensitive
Fair. Consider adding a digit or making your password longer

Bad. Consider adding a digit or making your password longer.

Bad. Consider adding a digit or making your password longer.
\square

Bad. Consider making your password longer.
?

Fair. Consider adding a digit or making your password longer.

Conditions with scoring differences

Baseline meter

Half-score

One-third-score

Nudge-Basic16

Nudge-Comprehensive8

8-character minimum; case sensitive
Excellent!

Poor. Consider adding a different symbol or making your password longer.

Bad. Consider adding a different symbol or making your password longer

Poor. Consider making your password longer.
\square ren

Excellent!

Conditions with scoring differences

Type new password:
Baseline meter

Half-score

One-third-score

Nudge-Basic16

Nudge-Comprehensive8

8-character minimum; case sensitive
Excellent!

Fair. Consider adding a different symbol or making your password longer.

Poor. Consider adding a different symbol or making your password longer.
$\square \square$

Good. Consider making your password longer.

Excellent!

Conditions with scoring differences

Type new password:
Baseline meter

Half-score

One-third-score

Nudge-Basic16

Nudge-Comprehensive8

8 -character minimum; case sensitive

Excellent!

Good. Consider adding a different symbol or making your password longer.

Poor. Consider adding a different symbol or making your password longer.
\square P.

Excellent.

Excellent!

Conditions with scoring differences

Type new password:
Baseline meter

Half-score

One-third-score

Nudge-Basic16

Nudge-Comprehensive8

Fair. Consider adding a different symbol or making your password longer
\square s.

Excellent.

Excellent!

\qquad

Conditions with scoring differences

Type new password:
Baseline meter

Half-score

One-third-score

Nudge-Basic16

Nudge-Comprehensive8

Excellent!
 Excellent!

Conditions with scoring differences

Type new password:
Baseline meter

Half-score

One-third-score

Nudge-Basic16

Nudge-Comprehensive8

Excellent!

\qquad

Meters help, but need improvement

- Color, size, shape, bunnies, don't make much difference
- Most meters on websites don't give accurate information
- Many meters provide praise too soon or don't provide actionable information

B. Ur, P.G. Kelley, S. Komanduri, J. Lee, M. Maass, M. Mazurek, T. Passaro, R. Shay, T. Vidas, L. Bauer, N. Christin, and
L.F. Cranor. How does your password measure up? The effect of strength meters on password creation. USENIX Security 2012.

Passwords

NIST (2017, updated 2020) recommends:

- minimum of 8 characters
- up to 64 characters should be accepted
- all printable ASCII characters and Unicode should be accepted
- blacklist compromised values, dictionary words, repetative characters, and context-specific words
- no other security requirements

Should provide guidance on picking a good password (e.g., password meter

Exercise: Choosing Passwords

- Guess the top five most common passwords in 2021

Weak passwords

Top 10 passwords in 2021:

1. 123456
2. 123456789
3. 12345
4. qwerty
5. password
6. 12345678
7. 111111
8. 123123
9. 1234567890
10. 1234567

13: 1q2w3e, 31: 1qaz2wsx, 60: football
Top 20 passwords suffice to compromise 10\% of accounts

Typical passwords

- 7-9 character root plus a 1-3 character appendage
- Root typically pronounceable, though not necessarily a real word
- Appendage is a suffix (90%) or prefix (10\%)
- Dictionary of 1000 roots plus 100 suffixes (= 100k passwords) cracks about 24\% of all passwords
- More sophisticated dictionaries crack about 60\% of passwords within 2-4 weeks
- Given biographical data (zip code, names, etc.) and other passwords of a user...
- success rate goes up a little
- time goes down to days or hours

Passwords

$$
\begin{aligned}
& \text { ~28 BITS OF ENTROPY }
\end{aligned}
$$

> ㅁㅁ
> ㅁㅁㅁㅁ $2^{28}=3$ DAYS AT 1000 GUESSES/SEC PLAUSIBLE ATTACK ON A WEAK REMOTE WEB SERMCE. YES, CRACKING A STOLEN HPSH IS FASIER, BUT I' NOT WHWT THE AVERAGE USER SHOUD WDREY ABOUT.)
> Difficulty to guess:
> EASY

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THIAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

