
CS 181W Fall 2022

Lecture 10: Password-Based Authentication

Classes of Security Countermeasures

• Authentication: mechanisms that bind principals
to actions

• Authorization: mechanisms that govern whether
actions are permitted

• Audit: mechanisms that record and review actions

• Authentication: mechanisms that bind principals
to actions

Classes of Principals

• Authenticating Machines
• Authenticating Programs
• Authenticating Humans

Authentication of humans
• Something you are

biometrics (e.g., fingerprints)
• Something you know

secret information (e.g., a password)
• Something you have

possession of a physical device (e.g., a particular phone)

Exercise: Authentication Mechanisms
• What are different ways you have authenticated yourself

to a machine? How should we classify them?

Something you are

Something you know

Something you have

Multi-factor Authentication
• Two-factor authentication: authenticate based on two

independent methods
• ATM card plus PIN
• password plus registered mobile phone

• Multi-factor authentication: two or more independent
methods

• Best to combine separate categories, not reuse
categories
• non-example: requiring two passwords from a single human:

arguably not independent
• non-example: requiring single password from each of two humans:

authenticates two humans then makes authorization decision

PASSWORDS

Password lifecycle
1. Create: user chooses password
2. Store: system stores password with user identifier
3. Use: user supplies password to authenticate
4. Change/recover/reset: user wants or needs to

change password

2. PASSWORD STORAGE

Password Storage
• Passwords typically stored in a file or database indexed

by username
• Strawman idea: store passwords in plaintext
• requires perfect authorization mechanisms
• requires trusted system administrators
• ...

Threat Model: Offline Attack
• Adversary can read files from disk

• Adversary can read process
memory

Password Storage
• Want: a function f such that...

1. easy to compute and store f(p) for a password p
2. hard given disclosed f(p) for attacker to recover p
3. hard to trick system by finding password q s.t. q != p yet f(p) =

f(q)

• Encryption would work, but then the key has to live
somewhere

• Cryptographic hash functions suffice!
• one-way property gives (1) and (2)
• collision resistance gives (3)

Hashed passwords
• Each user has:
• username uid
• password p

• System stores: uid, H(p)

Exercise: Hashed Passwords
• Consider an alternative authentication protocol where

user sends uid, H(p) and the service compares H(p) to the
stored hash. Would this be more or less secure than
sending the plaintext password? Why?

Hashed passwords are still vulnerable
Assume: attacker does learn password file (offline
guessing attack)
• Hard to invert: i.e., given H(p) to compute p
• But what if attacker didn't care about inverting hash on

arbitrary inputs?
• i.e., only have to succeed on a small set of p's: p1, p2, ..., pn

• Then attacker could build a dictionary...

Dictionary attacks

Dictionary:
• p1, H(p1)
• p2, H(p2)
• ...
• pn, H(pn)

• Dictionary attack: lookup H(p) in dictionary to find p

Salted hashed passwords
• Vulnerability: one dictionary suffices to attack every user
• Vulnerability: passwords chosen from small space
• Countermeasure: include a unique system-chosen

nonce as part of each user's password

Salted hashed passwords
• Each user has:
• username uid
• unique salt s
• password p

• System stores: uid, s, H(s, p)

3. PASSWORD USAGE

Authenticating to a remote server
• Each user has:
• username uid
• unique salt s
• password p

• System stores: uid, s, H(s, p)

1. Hu->L: uid, p
2. L and S: establish secure channel
3. L->S: uid, p
4. S: let h = stored hashed password for uid;

let s = stored salt for uid;
if h = H(s, p)
then uid is authenticated

Threat Model: Online Attack

• Adversary can interact with the
server as a user

When authentication fails
• Guiding principle: the system might be under attack, so

don't make the attacker's job any easier
• Don't leak valid usernames:
• Prompt for username and password in parallel
• Don't reveal which was bad

• Record failed attempts and review
• Perhaps in automated way by administrators
• Perhaps manually by user at next successful login

• Lock account after too many attempts
• Rate limit login

Rate limiting
• Vulnerability: hashes are easy to compute
• Countermeasure: hash functions that are slow to

compute
• Slow hash wouldn't bother user: delay in logging hardly noticeable
• But would bother attacker constructing dictionary: delay multiplied

by number of entries
• Ideally, enough to make constructing a large dictionary prohibitively

expensive
• Examples: bcrypt, scrypt, Argon2,...

Slowing down fast hashes
• Given a fast hash function...
• Slow it down by iterating it many times:

z1 = H(p);
z2 = H(p, z1);
...
z1000 = H(p, z999);
output z1 XOR z2 XOR ... XOR z1000

• Number of iterations is a parameter to control slowdown
• originally thousands
• current thinking is 10s of thousands

• Aka key stretching

Password
vulnerabilities
▪ Shoulder surfing attacks

▪ Online attacks

▪ Offline attacks

Attackers exploit password reuse

CRACKED PASSWORDS

UserID Password
jane iloveyou89
jami godoggo!
jim monkey1
kar pa$$word
katie princ3ss2

Online Store

Bank

Employer

jim monkey1

jim monkey1

jim monkey1

jim monkey2

1. PASSWORD CREATION

Strong passwords
• How to characterize strength?
• One Approach: Difficulty to brute force—"strength" or

"security level"
• if 2^X guesses required, strength is X

• Suppose passwords are L characters long from an
alphabet of N characters
• Then N^L possible passwords
• Solve for X in 2^X = N^L
• Get X = L log2 N
• This X is aka entropy of password
• Assuming every password is equally likely, X is the Shannon entropy of

the probability distribution (cf. Information Theory)

Exercise: Entropy of passwords
• Option A: 8 character passwords chosen uniformly at

random from 26 character alphabet

• Option B: 1 word chosen at random from entire
vocabulary
• average high-school graduate: 50k word vocabulary

Exercise: Entropy of passwords
• Option A: 8 character passwords chosen uniformly at

random from 26 character alphabet
• entropy of 8 log2 26 ≈ 37 bits
• but that means abcdefgh equally likely as ifhslgqz

• Option B: 1 word chosen at random from entire
vocabulary
• average high-school graduate: 50k word vocabulary
• entropy of log2 50k ≈ 16 bits
• but that assumes all words are equally likely

Where can you get lots of passwords
to study?

• Real passwords
• Stolen passwords
• Surveys
• Legitimate access to actual passwords

• Passwords created for experiments
• Lab studies
• Online studies

Dumb attacker
aaaaaaaa

aaaaaaab

aaaaaaac

aaaaaaad

aaaaaaae

…

Smart attacker
123456789

password

iloveyou

princess

12345678

…

Password Policies
• Problem: guide users into choosing strong passwords
• Solution: password policies are rules for composing

passwords
• e.g., must have at least one number and one punctuation symbol

and one upper case letter

Entropy estimation
• Entropy estimates [NIST 2006 based on experiments by

Shannon]:
• (assuming English and use of 94 characters from keyboard)
• 1st character: 4 bits
• next 7 characters: 2 bits per character
• characters 9..20: 1.5 bits per character
• characters 21+: 1 bit per character
• user forced to use lower & upper case and non-alphabetics: flat

bonus of 6 bits
• prohibition of passwords found in a 50k word dictionary: 0 to 6 bits,

depending on password length

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf

Entropy estimation
“Unfortunately, we do not
have much data on the
passwords users choose
under particular rules....
NIST would like to obtain
more data on the
passwords users actually
choose, but … system
administrators are
understandably reluctant
to reveal password data
to others.”

Participant tasks
▪ Create password under a randomly assigned condition

▪ Take a survey

▪ Recall password

▪ Return 2 days later to recall password and take survey

Password policies

Policy Example password

Basic8 password

Dictionary8 sapsword

Comprehensive8 Sapsword1!

Basic16 passwordpassword

S. Komanduri, R. Shay, P.G. Kelley, M.L. Mazurek, L. Bauer, N. Christin, L.F. Cranor, and S. Egelman. Of
passwords and people: Measuring the effect of password-composition policies. CHI 2011.

Password strength metric
Guessability

Estimate of how many
guesses a sophisticated
attacker will need to
guess a password

Password
Guess
number

12345678 4

Password178 1.4 x 106

jn%fKXsl!8@Df Beyond
cutoff

Password policy strength

We all like to use the same symbols

0

100

200

300

400

@ ! $ * # . - & _

O
cc

ur
re

nc
es

Usability metrics
▪ Creation attempts and

time

▪ Recall attempts

▪ Reported sentiment

▪ Write-down rate

▪ Study drop-out rate

Password policy usability
Creating a password

for this study was
annoying

Creating a password
for this study was

difficult

Do password meters help?

Conditions with visual differences

Conditions with visual differences

Conditions with visual differences

Conditions with visual differences

Conditions with visual differences

Conditions with visual differences

Conditions with scoring differences

Conditions with scoring differences

Conditions with scoring differences

Conditions with scoring differences

Conditions with scoring differences

Conditions with scoring differences

Conditions with scoring differences

Number of Guesses

Pe
rc

en
ta

ge
 o

f P
as

sw
or

ds
 C

ra
ck

ed

0%

10%

20%

30%

40%

50%

104 105 106 107 108 109 1010 1011 1012 1013

No meter

Baseline meter

} Visual changes
One-third-score
Half-score

Weak
5×108

Medium
5×1010

Strong
5×1012

Meters help, but need improvement
▪ Color, size, shape, bunnies, don’t make much difference

▪ Most meters on websites don’t give accurate information

▪ Many meters provide praise too soon or don’t provide
actionable information

B. Ur, P.G. Kelley, S. Komanduri, J. Lee, M. Maass, M. Mazurek, T. Passaro, R. Shay, T. Vidas, L. Bauer, N. Christin, and
L.F. Cranor. How does your password measure up? The effect of strength meters on password creation. USENIX Security
2012.

Passwords
NIST (2017, updated 2020) recommends:
• minimum of 8 characters
• up to 64 characters should be accepted
• all printable ASCII characters and Unicode should be

accepted
• blacklist compromised values, dictionary words, repetative

characters, and context-specific words
• no other security requirements

Should provide guidance on picking a good password (e.g.,
password meter

Exercise: Choosing Passwords
• Guess the top five most common passwords in 2021

Weak passwords
Top 10 passwords in 2021:

1. 123456
2. 123456789
3. 12345
4. qwerty
5. password
6. 12345678
7. 111111
8. 123123
9. 1234567890
10. 1234567

13: 1q2w3e, 31: 1qaz2wsx, 60: football

Top 20 passwords suffice to compromise 10% of accounts

Typical passwords
• 7-9 character root plus a 1-3 character appendage
• Root typically pronounceable, though not necessarily a real word
• Appendage is a suffix (90%) or prefix (10%)

• Dictionary of 1000 roots plus 100 suffixes (= 100k
passwords) cracks about 24% of all passwords

• More sophisticated dictionaries crack about 60% of
passwords within 2-4 weeks

• Given biographical data (zip code, names, etc.) and other
passwords of a user...
• success rate goes up a little
• time goes down to days or hours

Passwords

