Lecture 8: Qualitative Analysis

CS 181W

Fall 2022

Review: Types of studies

- Interviews: conversations with individuals
- Focus groups: discussions with groups
- Surveys: asynchronous questions
- Experimental Studies: randomized multi-condition studies
- Usability Testing: observations of tool use
- Cognitive Walkthrough: expert evaluation
- Diary Studies: contemporary record of real-world behavior
- Observational Studies: records of behavior in the wild
- Mixed-methods studies

Examples of qualitative data

- Interviews
- Open-ended survey responses
- Drawings
- Photos
- Videos
- Social media posts

- Diary entries
- Comments or reviews posted in online forums
- Chat transcripts
- Think-aloud transcripts
- Researcher's notes

Goals of qualitative data analysis

- Make sense of unstructured data
- Develop consistent and reliable interpretations of data

Thematic Coding Approaches

- Emergent coding
 - don't start with a theory or hypothesis
 - look for interesting concepts or ideas and refine as you go

- A priori coding
 - start with established theory or hypothesis
 - theory typically from prior work

Creating a codebook

- Emergent coding
 - Read through (subset of) the data
 - Read through again and this time identify interesting things to code
 - Combine and refine codes, perhaps in a hierarchy
 - Update iteratively as you code data
- A priori coding
 - Make a list of all the possible categories you might have based on prior theory
- Codebooks are often hierarchical
- Too many codes can make it hard to code reliably and difficult to make sense of your data

Example: Emergent coding

- Let's using emergent coding to develop a codebook for drawings of privacy
 - labels
 - definitions
 - examples
 - categories/concepts

Example: A priori coding

collection	surveillance	people watching	eyes, law enforce.	
	interrogation	coerced acquisition	theft, stealing	
processing	aggregation	gathering info		
	identification	link data to person	ID card	
	insecurity	data not secure	passwords, enc	
	secondary use	data reuse		
	exclusion	failed notice	blindfolded user	
dissemination	breach of conf	data breach	hacker	
	disclosure	data sharing	arrows	
	exposure	embarrassing data	bathroom	
	incr. accessibility	easier access to data		
	appropriation	id theft		
	distortion	manipulation of data		
invasion	intrusion	incursion into life	personal bubble	
	decision interfere.	impose on decisions		

Exercise: Qualitative Coding

Reliability

- Stability
 - also called intra-coder reliability
 - examines whether the same coder rates the data in the same way throughout the coding process
- Reproducibility
 - also called **inter-coder** reliability or investigator triangulation
 - examines whether different coders code the same data in a consistent way

Reliability measures

Percent agreement

%agreement = $\frac{\text{the number of cases coded the same way by multiple coders}}{\text{the total number of cases}}$

• Cohen's Kappa:

$$K = \frac{P_a - P_c}{1 - P_c}$$

Example: Cohen's Kappa

		Coder 2			
		Surveillance	Insecurity	Intrusion	Marginal Total
Coder 1	Surveillance	.26	.07	.04	.37
	Insecurity	.04	.12	.01	.17
	Intrusion	.09	.02	.35	.46
	Marginal Total	.39	.21	.40	

$$P_a = .26 + .12 + .35 = .73$$

$$P_C = (.37 * .39) + (.17 * .21) + (.40 * .46) = .364$$

$$K = \frac{.73 - .364}{1 - .364} = .575$$

Increasing reliability

- Multiple coders should each code a small number of items independently, compare answers, and resolve conflicts
 - This may lead to changes in the codebook
 - Process may need to be repeated several times until reliability is sufficient
 - For any items double coded, the resolved codes are the ones that should be reported and used in analysis
- Coders can collaboratively discuss and code everything together
- One person can code everything and another can review the codes and suggest changes for the two coders to discuss

Exercise: Measuring Reliability

Qualitative Analysis

CARLA VENTRESCA AND HENRY BECKETT