Lecture 1: Introduction to Security

CS 181W

Fall 2022

sin.sin_port = REPORT_PORT; sin.sin_addr.s_addr = inet_addr(XS("128.32.137.13"));

November 2, 1988


```
10002040 add
                 ecx, edi
10002042 push
                 ecx
10002043 push
                 offset aShell32_dll_as ; "SHELL32.DLL.ASLR."
                 edx, [esp+224h+strFileName]
10002048 lea
                 offset aS08x
                                : "$$$88x"
1000204C push
                                  : LPWSTR
                 edx
10002051 push
10002052 call
                 ds:wsprintfV
                 eax, [esp+22Ch+arg_4]
10002058 nov
                 ecx, [esp+22Ch+var 200]
1000205F nov
10002063 nov
                 edx, [esp+22Ch+hObject]
10002067 push
                 eax
                                  ; int
10002068 push
                                  ; int
                 ecx
18882869 push
                 edx
                                  : int
                 eax, [esp+238h+strFileName]
1000206A lea
1000206E push
                 eax
                                 ; 1pString2
                 sub_100034D2
1000206F call
18882874 nov
                 ecx, [esp+23Ch+hObject]
10002078 push
                                 ; 1pAddress
                 ecx
                 esi, eax
18882879 nov
1000207B call
                 sub 1000368F
```

June 1, 2012

August 25, 2022

INTERESTING

HARD

FUN

IMPORTANT

Defining security

"This tops the list of recommendations for upgrading your online security."

Functional Requirements

- Security = does what it should + nothing more
- "As a user I can action so that purpose"
 - e.g., As a professor, I can create a new assignment by specifying its name, number of possible points, and due date.
 - e.g., As a student, I can upload a file as a solution to an assignment.
 - e.g., As a professor, I can assign grades to student solutions.

Functional requirements should specify what not how

- Should be testable: a 3rd party could determine whether requirement is met
- These user stories reveal system assets

Security Goals

- Security = does what it should + nothing more
- "The system shall prevent/detect action on/to/with asset."
 - e.g., "The system shall prevent students from accessing assignments that are not theirs"
 - e.g., "The system shall prevent grades from being changed by anyone but the professor"

Security goals should specify what not how

- Poor goals:
 - "the system shall use encryption to prevent reading of messages"
 - "the system shall use authentication to verify user identities"
 - "the system shall resist attacks"
- If a system enforces a goal, it is called a security property

Confidentiality Integrity Availability

Confidentiality Properties

Protection of assets from unauthorized disclosure i.e., which principals are allowed to learn what

Examples:

- Keep contents of a file from being read (access control: more later)
- Keep information secret (*information flow*: more later)
 - value of variable secret
 - behavior of system
 - information about individual

Integrity Properties

Protection of assets from unauthorized modification

i.e., what changes are allowed to system and its environment, including inputs and outputs

Examples:

- Output is correct according to (mathematical) specification
- No exceptions thrown
- Only certain principals may write to a file (access control)
- Data are not corrupted or tainted by downloaded programs (information flow)

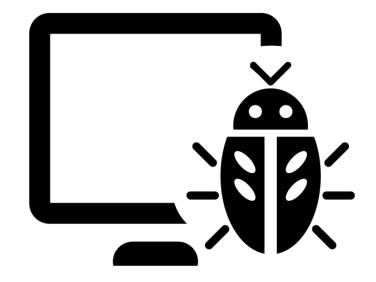
Availability Properties

Protection of assets from loss of use i.e., what has to happen when/where

Examples:

- Operating system accepts inputs periodically
- Program produces output by specified time
- Requests are processed fairly (order, priority, etc.)

Denial of service (DoS) attacks compromise availability


A Secure Grade Management System

- 1. Students can always log into their accounts
- 2. The grade for an assignment is available only to the student who submitted that assignment.
- 3. The professor can see all submitted assignments and grades.
- 4. If your course grade changed, then the professor made that change.
- 5. If your course grade changed, you see the updated grade.
- 6. Requests to the grading server are processed in the order they were received.

Attackers exploit bugs

- Software bugs
- Hardware bugs
- Humans (social engineering)
- Unintended characteristics
 - side channels
 - poor sources of randomness

• ...

Created by iconoci from Noun Project

Modeling the attacker

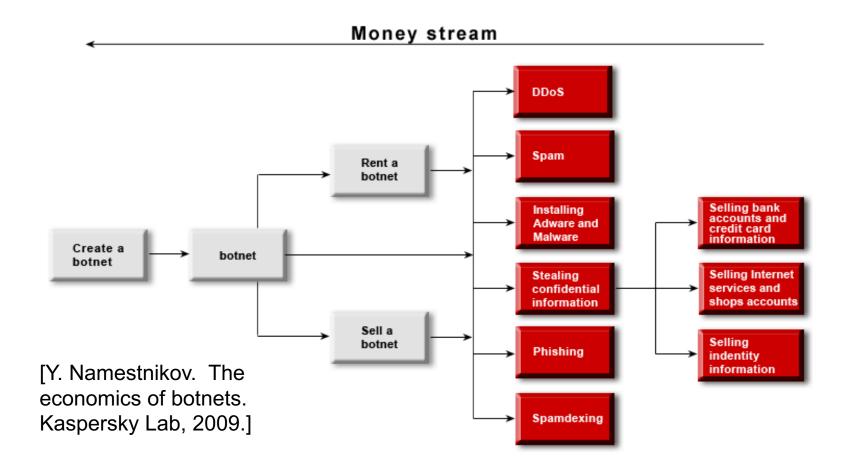
- What type of action will they take?
 - Passive (look, but don't touch)
 - Active (look and inject messages)
- How much do they already know?
 - External / internal attacker?
- How sophisticated are they?
- How much do they care? What resources do they have?
 - How much time/money will they spend?

Created by Jorge Reyes from the Noun Project

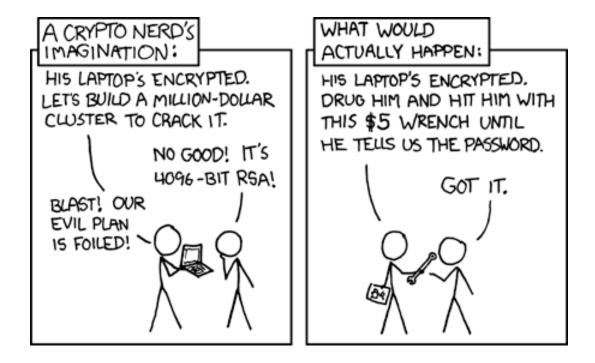
Exploiting bugs as a nuisance

- Pranks, to be annoying
 - Newsday tech writer & hacker critic found ...
 - · Email box jammed with thousands of messages
 - Phone reprogrammed to an out of state number where caller's heard an obscenity-loaded recorded message [Time Magazine, December 12, 1994]
- May be costly
 - MyDoom (2004) \$38.5 billon
 - SoBig (2003) \$37.1 billion
 - Love Bug (2000) \$15 billion
 - Code Red (2001) \$2 billion

Created by Michael Thompson from Noun Project


Exploiting bugs for profit

- Credit card and financial account fraud
- Stealing intellectual property or confidential information
- Ransom
- Extortion
- Stealing computing resources to sell

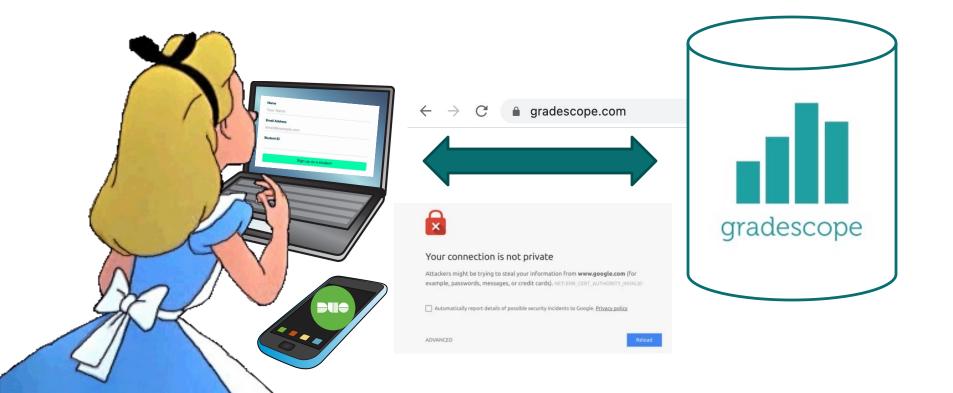

Created by Gregor Cresnar from Noun Project

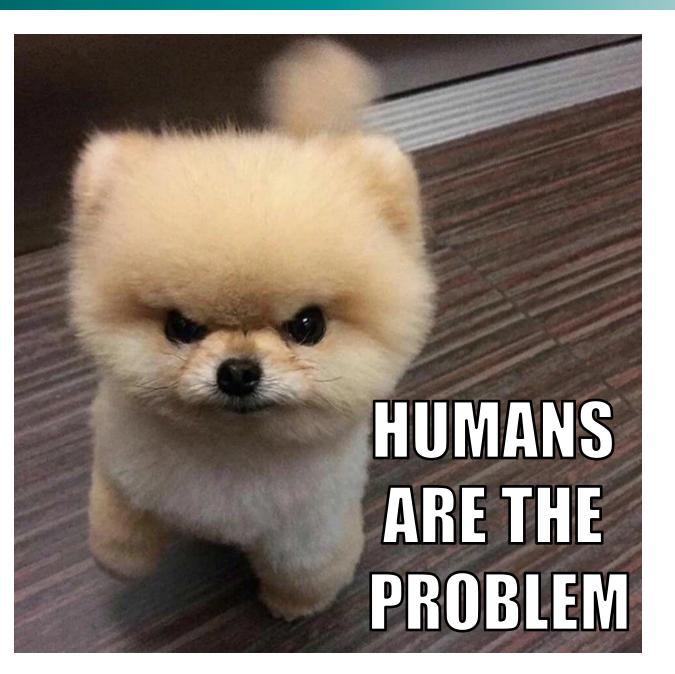
The economics of botnets

Think like an attacker

- Adversary is targeting assets, not defenses
- Will try to exploit the *weakest* part of the defenses
 - E.g., bribe human operator, social engineering, steal (physically) server with data

What will be attacked?




What was being defended?

A Secure Grade Management System

- 1. Students can always log into their accounts
- 2. The grade for an assignment is available only to the student who submitted that assignment.

Better together

Examining security/privacy and usability together is often critical for achieving either

Interdisciplinary approach useful

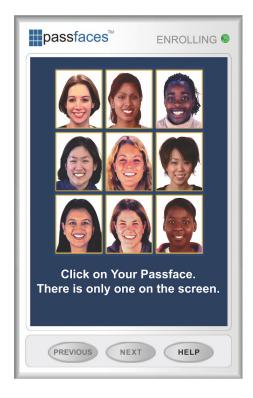
We can borrow models and methods from other disciplines that study human behavior:

- HCI
- Psychology
- Sociology
- Ethnography
- Cognitive sciences
- Behavioral economics

- Warnings science
- Risk perception
- Organizational change
- Marketing
- Counterterrorism
- Communication
- Persuasive technology
- Learning science
- Legal theory

What makes usable security different?

- Presence of an adversary or risk
- Usability is not enough
- We also need systems that remain secure when:
 - Attackers (try to) fool users
 - Users behave in predictable ways
 - Users are acting under stress
 - Users are careless, unmotivated, busy


Security and usability together

Security	Usability/HCI	Usable Security
Humans are a secondary constraint to security constraints	Humans are the primary constraint, security rarely considered	Human factors and security are both primary constraints

Security and usability together

Security	Usability/HCI	Usable Security
Humans are a secondary constraint to security constraints	Humans are the primary constraint, security rarely considered	Human factors and security are both primary constraints
Humans considered primarily in their role as adversaries/attackers	Concerned about human error but not human attackers	Concerned about both normal users and adversaries
Involves threat models	Involves task models, mental models, cognitive models	Involves threat models AND task models, mental models, etc.
Focus on security metrics	Focus on usability metrics	Considers usability and security metrics together
User studies rarely done	User studies common	User studies common, often involve deception + active adversary

Example: graphical passwords

Example: graphical passwords

Security	Usability/HCI	Usable Security
passwords?	How <i>difficult</i> is it for a user to create, remember, and enter a graphical password? How long	All the security/privacy and usability HCI questions
How can we make the password of space larger to make the password harder to guess?	does it take? How hard is it for users to learn	How do users select graphical passwords? How can we help them choose passwords harder for attackers to prodict?
How are the stored passwords secured? 4 Can an attacker gain knowledge by observing a user entering her password? 4	the system? Are users <i>motivated</i> to put in effort to create good passwords? Is the system <i>accessible</i> using a variety of devices, for users with	for attackers to predict? As the password space increases, what are the impacts on usability factors and predictability of human selection?

LOGISTICS

Course Logistics

Prof. Eleanor Birrell

Research in usable security and privacy OH: T 4-6pm PT + TBA

- Class Meetings:
 - Monday and Wednesday, 11:00am-12:15pm PT in Lincoln 1135

Course Work

- Final course project (35%)
 - Conduct an experiment in usable security or usable privacy
 - Done in groups of 3-4
- Homework Assignments (40%)
 - Approximately 8 assignments
 - Mostly building towards your final project
- Reading Assignments (20%)
 - Read papers and write brief summaries
- Participation (5%)
 - Show up! Participate! Have fun!
- All assignments will be due Tuesdays at 11:59pm PT

Course website

https://cs.pomona.edu/~ebirrell/classes/cs181w/2022fa/

• All information is on the course website

CS 181W: Usable Security and Privacy

Copyright © Randy Glasbergen. www.glasbergen.com