
CS 181S Fall 2020

Lecture 20: Information Flow

Where we were…

• Authentication: mechanisms that bind principals
to actions

• Authorization: mechanisms that govern whether
actions are permitted

• Audit: mechanisms that record and review actions

Who defines Policies?
• Discretionary access control (DAC)

• Philosophy: users have the discretion to specify policy
themselves

• Commonly, information belongs to the owner of object
• Access control lists, privilege lists, capabilities

• Mandatory access control (MAC)
• Philosophy: central authority mandates policy
• Information belongs to the authority, not to the individual users
• MLS and BLP, Chinese wall, Clark-Wilson, etc.

Access control for computed data

Doc

Can read:
Alice
Bob

Doc’ Doc’’

computation

Can read:
Alice
Bob

Can read:
Alice
Bob

4

Scaling to many pieces of data…

5

Scaling to many users…

6

Scaling to many interactions…

7

? ?

?

? ?

Need to assign
restrictions in an
automatic way.

Information flow policies

Doc

Can flow to:
Alice

Doc’ Doc’’

computation

Automatic
deduction
of policies!

Can flow to:
Alice

Can flow to:
Alice

8

Information Flows between Principals
• Channel: means to communicate information
• Storage channel: written by one program and read by

another
• Legitimate channel: intended for communication between

programs
• Covert channel: not intended for information transfer yet

exploitable for that purpose

Information Flow (IF) Policies
• Focus on information not objects
• An IF policy specifies restrictions on the associated data,

and on all its derived data.
• IF policy for confidentiality:

• Value 𝑣 and all its derived values are allowed to be read only by
Alice

10

Different from the access control policy:
Value 𝑣 is allowed to be read at most by Alice.

• The enforcement mechanism automatically deduces the
restrictions for derived data.

Policy Granularity
• Objects can be system principles (files, programs, sockets…)
• Objects can be program variables

11

Scaling to many interactions…

12

Scaling to many interactions…

13

Labels represent policies

Conf, {}

Secret, {}

Secret, {nuc, crypto}

Secret, {nuc} Secret, {crypto}Conf, {nuc,crypto}

Conf, {nuc} Conf, {crypto}

Labels represent policies

Low

High

Labels represent policies

16

Doc
H

Doc’ Doc’’
HH

Noninterference
[Goguen and Meseguer 1982]

An interpretation of noninterference for a program:
• Changes on H inputs should not cause changes on L outputs.

17

H

L

H

L

Program
Inputs Outputs

Noninterference: Example

18

H

L

H

L

H

L

H

L

1

2

3

3

3

2

5

3

ℎ
ℎ% ≔ ℎ + 𝑙;
𝑙% ≔ 𝑙 + 1

𝑙

ℎ′

𝑙′

ℎ
ℎ% ≔ ℎ + 𝑙;
𝑙% ≔ 𝑙 + 1

𝑙

ℎ′

𝑙′

The program satisfies noninterference!

Noninterference: Example

19

H

L

H

L

H

L

H

L

1

2

3

6

ℎ

𝑙′
𝑙′ ≔ ℎ ∗ 2

ℎ

𝑙′
𝑙′ ≔ ℎ ∗ 2

The program does not satisfy noninterference!

2

2

Noninterference: Example

20

H

L

H

L

H

L

H

L

1

1

3

0

ℎ

𝑙′

if(ℎ == 1){
𝑙′ ≔ 1

} else {
𝑙′ ≔ 0

}

ℎ

𝑙′

The program does not satisfy noninterference!

2

2

if(ℎ == 1){
𝑙′ ≔ 1

} else {
𝑙′ ≔ 0

}

Noninterference
• Consider a program 𝐶.
• Consider two memories 𝑀. and 𝑀/, such that

• they agree on values of variables tagged with L:
• 𝑀$ =& 𝑀'.

21

𝑀$ and 𝑀' might not agree on values of
variables tagged with H.

• 𝐶(𝑀*) are the observations produced by executing 𝐶 to
termination on initial memory 𝑀*:
• final outputs, or
• intermediate and final outputs.

• Then, observations tagged with L should be the same:
• 𝐶 𝑀. =3 𝐶 𝑀/ .

Noninterference

∀𝑀$, 𝑀': if 𝑀$ =& 𝑀', then 𝐶 𝑀$ =& 𝐶 𝑀' .

22

For a program 𝐶 and a mapping from variables to labels in
L, H :

Exercise 1: Noninterference
• P outputs (𝐻/, 𝐿/) where 𝐻/ = 𝐻1||𝐿1 and 𝐿/ = 𝐿1

• || denotes string concatenation.

• P outputs 𝐿/ where 𝐿3 = 4 𝐿1 if 𝐻1 is even
𝐿1||𝐿1 if 𝐻1 is odd

Enforcement Mechanisms
• Static Information Flow Control:

• type checking

• Dynamic Information Flow Control:
• taint-tracking
• runtime monitoring

A simple programming language
e ::= x | n | e1+e2 | ...

c ::= x = e
| if e then c1 else c2
| while e do c
| c1; c2

Typing rules for expressions
Judgement G ⊢ e : ℓ
According to mapping Γ, expression e has type (i.e., label) ℓ.

26

Variable: G ⊢ x : Γ(x)
Constant: G ⊢ n : ⊥

Expression: G ⊢ e+e’ : ℓ ⊔ ℓ’
if G ⊢ e : ℓ
and G ⊢ e’: ℓ’

Operator for combining labels
• For each ℓ and ℓ’, there should exist label ℓ⊔ℓ’, such that:

• ℓ⊑ ℓ⊔ℓ’ , ℓ’⊑ ℓ⊔ℓ’, and
• if ℓ⊑ ℓ’’ and ℓ’⊑ ℓ’’, then ℓ⊔ℓ’ ⊑ ℓ’’.

• ℓ⊔ℓ’ is called the join of ℓ and ℓ’.
• Operator ⊔ is associative and commutative.

27

Lattice of labels
• The set of labels and relation ⊑ define a lattice, with join

operator ⊔.

28

Conf, {}

Secret, {}

Secret, {nuc, crypto}

Secret, {nuc} Secret, {crypto}Conf, {nuc,crypto}

Conf, {nuc} Conf, {crypto}

⊑

⊑

⊑

⊑

⊑
⊑ ⊑

⊑

⊒

⊒

⊒

⊒ ⊔

⊔
⊤

⊥

Exercise 2: Join
• What are the following labels (H or L)?

1. 𝐻 ⊔ 𝐻
2. 𝐻 ⊔ 𝐿
3. 𝐿 ⊔ 𝐻
4. 𝐿 ⊔ 𝐿

Low

High

Typing rules for commands
Judgement G, 𝑐𝑡𝑥 ⊢ c

According to mapping Γ, and context label 𝑐𝑡𝑥, command
c is type correct

33

e ::= x | n | e1+e2 | ...

c ::= x = e
| if e then c1 else c2
| while e do c
| c1; c2

(⇒ satisfies noninterference)

Exercise 3: Checking an assignment

34

x = y

Γ(x) is L.
Γ(y) is L.
Does this assignment satisfy NI?

Γ(x) is H.
Γ(y) is L.
Does this assignment satisfy NI?

Γ(x) is L.
Γ(y) is H.
Does this assignment satisfy NI?

Examples for confidentiality

Checking an assignment

35

x = y

It satisfies NI, if Γ(y) ⊑ Γ(x).

Assignments cause explicit information flows.

Checking an assignment

36

x = y
It satisfies NI, if Γ(y) ⊑ Γ(x).

MLS for confidentiality
“no read up”:

S may read O iff Label(O) ⊑ Label (S)

“no write down”:
S may write O’ iff Label(S) ⊑ Label (O’)

Checking an assignment

37

x = y
It satisfies NI, if Γ(y) ⊑ Γ(x).

MLS for confidentiality
“no read up”:

C may read y iff Label(y) ⊑ Label (C)

“no write down”:
C may write x iff Label(C) ⊑ Label (x)

Checking an assignment

38

x = y + z

It satisfies NI, if Γ(y)⊑ Γ(x) and Γ(z) ⊑ Γ(x).
It satisfies NI, if Γ(y+z) ⊑ Γ(x).

???

Checking an assignment

39

x = y + z

It satisfies NI, if Γ(y) ⊔ Γ(z)⊑ Γ(x).

Exercise 4: Checking an if-statement
if z > 0 then

x = 1
else

x = 0

40

Γ(x) is L.
Γ(z) is L.
Does this if-statement satisfy NI?

Γ(x) is H.
Γ(z) is L.
Does this if-statement satisfy NI?

Γ(x) is L.
Γ(z) is H.
Does this if-statement satisfy NI?

Examples for confidentiality

Checking an if-statement

41

Conditional commands (e.g., if-statements and
while-statements) cause implicit information flows.

if z > 0 then
x = 1

else
x = 0

Context

42

They reveal
information about
z>0.

if z > 0 then
x = 1

else
x = 0

Introduce a context label 𝑐𝑡𝑥

Its 𝑐𝑡𝑥 is Γ(z).

Context

43

if z > 0 then
x = 1

else
x = 0

Introduce a context label 𝑐𝑡𝑥

Its 𝑐𝑡𝑥 is Γ(z > 0).

Check if
𝑐𝑡𝑥 ⊔ Γ(e) ⊑ Γ(x).

Implicit
flow

Explicit
flow

Assignment rule
G, 𝑐𝑡𝑥 ⊢ x:=e
if G ⊢ e : ℓ
and ℓ ⊔ 𝑐𝑡𝑥 ⊑ G(x)

44

G, 𝑐𝑡𝑥 ⊢ x:=e

G ⊢ e : ℓ ℓ ⊔ 𝑐𝑡𝑥 ⊑ G(x)

If-rule

45

G, 𝑐𝑡𝑥 ⊢ if e then c1 else c2

G ⊢ e : ℓ G, ℓ ⊔ 𝑐𝑡𝑥 ⊢ c1 G, ℓ ⊔ 𝑐𝑡𝑥 ⊢ c2

Static type system

G , 𝑐𝑡𝑥 ⊢ x:=e

G ⊢ e : ℓ ℓ ⊔ 𝑐𝑡𝑥 ⊑ G(x)

G , 𝑐𝑡𝑥 ⊢ if e then c1 else c2

G ⊢ e : ℓ G , ℓ ⊔ 𝑐𝑡𝑥 ⊢ c1 G , ℓ ⊔ 𝑐𝑡𝑥 ⊢ c2

G , 𝑐𝑡𝑥 ⊢ while e do c

G ⊢ e : ℓ G , ℓ ⊔ 𝑐𝑡𝑥⊢ c

G , 𝑐𝑡𝑥 ⊢ c1;c2

G , 𝑐𝑡𝑥 ⊢ c1 G , 𝑐𝑡𝑥 ⊢ c2

46

Assignment-Rule:

If-Rule:

While-Rule:

Sequence-Rule:

Soundness of type system

G,𝑐𝑡𝑥 ⊢ c ⇒ c satisfies NI

48

Exercise 5: Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. How much time did you spend on this video lecture
(including time spent on exercises)?

3. Do you have particular questions you would like me to
address class?

4. Do you have any other comments or feedback?

49

