
CS 181S Fall 2020

Lecture 18: Capabilities

Where we were…

• Authentication: mechanisms that bind principals
to actions

• Authorization: mechanisms that govern whether
actions are permitted
• Discretionary Access Control
• Mandatory Access Control

Access Control Policy
• An access control policy specifies which of the

operations associated with any given object each
principal is authorized to perform

• Expressed as a relation 𝐴𝑢𝑡ℎ:

𝑨𝒖𝒕𝒉
Objects

dac.tex dac.pptx

principals
ebirrell r,w r,w
faculty r r
student r

Access Control Lists

Capability
Lists

Capability Lists
• The capability list for a principal 𝑃 is a list

⟨𝑂,, 𝑃𝑟𝑖𝑣𝑠,⟩, ⟨𝑂3, 𝑃𝑟𝑖𝑣𝑠3⟩, … , ⟨𝑂5, 𝑃𝑟𝑖𝑣𝑠5⟩
• e.g., ⟨dac.tex, {r,w}⟩ ⟨dac.pptx, {r,w}⟩

• Capabilities carry privileges.
1) Authorization: Performing operation 𝑜𝑝 on object 𝑂8 requires a

principal 𝑃 to hold a capability 𝐶8 = ⟨𝑂8, 𝑃𝑟𝑖𝑣𝑠8⟩ such that 𝑜𝑝 ∈
𝑃𝑟𝑖𝑣𝑠8

2) Unforgeability: Capabilities cannot be counterfeited or
corrupted.

• Note: Capabilities are (typically) transferable

Exercise 1: Capabilities
• Consider the following proposal: capabilities will be

represented using a pair ⟨𝑁𝑎𝑚𝑒 𝑂𝑏𝑗 , 𝑃𝑟𝑖𝑣𝑠⟩, where
𝑁𝑎𝑚𝑒 𝑂𝑏𝑗 is a random 128-bit string and 𝑃𝑟𝑖𝑣𝑠 is the set
of privileges conferred by the capability. The function
𝑁𝑎𝑚𝑒, if it exists at all, is kept secret. What functionality
expected for capabilities does this alternative support and
where (if at all) does it fall short?

Example: OAuth2
• Industry standard

authorization protocol
• Used for single sign-on by

major IDPs
• Facebook, Google

• A bearer token contains a
unique identifier

Authenticity: Tagged Memory

• Example: IBM System 38
• tag = 0: normal memory
• tag = 1: this word + next are a capability
• In user mode, cannot modify tag bit or modify word with

tag = 1
• Exception: can copy capabilities

• pass capabilities in function calls

obj p1p2…pN1 1 type

Authenticity: Protected Address Space

• General idea: store capabilities in region of memory we
know how to protect
• Option 1: protected kernel memory
• Option 2: protected memory segment

• Note: OS must be trusted

• Store list of capabilities in process control block
• Capabilities referenced by index into c-list

Example: File Descriptor Table
• In Unix etc, a file

descriptor is a handle used
to reference files and I/O
resources

• File descriptors have
modes (read, write) and
are stored in per-process
file descriptor table

• File descriptors can be
passed between
processes using
sendmsg()

Cryptographically-protected capabilities
• Object owner creates capabilities using a digital signature

scheme
• Capabilities are triples 𝐶 = ⟨𝑂, 𝑃𝑟𝑖𝑣𝑠, Sig(𝑂, 𝑃𝑟𝑖𝑣𝑠; 𝑘H)⟩
• Authorization: P is permitted to perform op on O if P

produces a capability for O with 𝑜𝑝 ∈ 𝑃𝑟𝑖𝑣𝑠 and a valid
signature

• Unforgeability: digital signatures are unforgeable to
adversaries who don't know private key 𝑘H

• Note: assumes PKI

Restricted Delegation
• 𝐶J = 𝑂, 𝑃𝑟𝑖𝑣𝑠J, 𝑝𝑘,, 𝜎J

• where 𝜎J = Sig 𝑂, 𝑃𝑟𝑖𝑣𝑠J, 𝑝𝑘,; 𝑠𝑘J
• 𝐶, = 𝑂, 𝑃𝑟𝑖𝑣𝑠,, 𝑝𝑘3, (𝑃𝑟𝑖𝑣𝑠J, 𝑝𝑘,, 𝜎J), 𝜎,

• Where 𝜎, = Sig 𝑂, 𝑃𝑟𝑖𝑣𝑠,, 𝑝𝑘3, (𝑃𝑟𝑖𝑣𝑠L, 𝑝𝑘,, 𝜎J); 𝑘,

To Authorize 𝑜𝑝 with 𝐶J:
1. Verify 𝜎J is a valid signature

of (𝑂, 𝑃𝑟𝑖𝑣𝑠J, 𝑝𝑘,)
2. Check that 𝑜𝑝 ∈ 𝑃𝑟𝑖𝑣𝑠J

To Authorize 𝑜𝑝 with 𝐶,:
1. Verify 𝜎J is a valid signature of

(𝑂, 𝑃𝑟𝑖𝑣𝑠J, 𝑝𝑘,)
2. Verify 𝜎, is a valid signature of

(𝑂, 𝑃𝑟𝑖𝑣𝑠,, 𝑝𝑘3, (𝑃𝑟𝑖𝑣𝑠L, 𝑝𝑘,, 𝜎J))
3. Check that 𝑃𝑟𝑖𝑣𝑠, ⊂ 𝑃𝑟𝑖𝑣𝑠J
4. Check that 𝑜𝑝 ∈ 𝑃𝑟𝑖𝑣𝑠,

Exercise 2: Restricted Delegation
• Assume you have a credential

𝐶, = 𝑑𝑎𝑐. 𝑝𝑝𝑡𝑥, {𝑟, 𝑤}, 𝑝𝑘3, ({𝑟, 𝑤, 𝑥}, 𝑝𝑘,, 𝜎J), 𝜎,

1. Generate a credential 𝐶3 that would authorized the holder to
read (but not write) dac.pptx

2. Define the sequence of steps that should be taken to authorize
𝑜𝑝 with 𝐶3

Exercise 2: Restricted Delegation
• Assume you have a credential

𝐶, = 𝑑𝑎𝑐. 𝑝𝑝𝑡𝑥, {𝑟, 𝑤}, 𝑝𝑘3, ({𝑟, 𝑤, 𝑥}, 𝑝𝑘,, 𝜎J), 𝜎,

1. Generate a credential 𝐶3 that would authorized the holder to
read (but not write) dac.pptx
𝐶3 = 𝑑𝑎𝑐. 𝑝𝑝𝑡𝑥, {𝑟}, 𝑝𝑘U, 𝑟, 𝑤, 𝑥 , 𝑝𝑘,, 𝜎J , 𝑟, 𝑤 , 𝑝𝑘3, 𝜎, , 𝜎3

2. Define the sequence of steps that should be taken to authorize
𝑜𝑝 with 𝐶3

1. Verify 𝜎J is a valid signature of (𝑑𝑎𝑐. 𝑝𝑝𝑡𝑥, 𝑟, 𝑤, 𝑥 , 𝑝𝑘,)
2. Verify 𝜎, is a valid signature of (𝑑𝑎𝑐. 𝑝𝑝𝑡𝑥, {𝑟, 𝑤}, 𝑝𝑘3, 𝑟, 𝑤, 𝑥 , 𝑝𝑘,, 𝜎J)
3. Verify 𝜎3 is a valid signature of

(𝑑𝑎𝑐. 𝑝𝑝𝑡𝑥, {𝑟}, 𝑝𝑘U, 𝑟, 𝑤, 𝑥 , 𝑝𝑘,, 𝜎J , 𝑟, 𝑤 , 𝑝𝑘3, 𝜎,)
4. Check that 𝑃𝑟𝑖𝑣𝑠, ⊂ 𝑃𝑟𝑖𝑣𝑠J
5. Check that 𝑃𝑟𝑖𝑣𝑠3 ⊂ 𝑃𝑟𝑖𝑣𝑠,
6. Check that 𝑜𝑝 ∈ 𝑃𝑟𝑖𝑣𝑠3

Revocation
• Revocation Tags

• Capabilities are tuples 𝐶 = ⟨𝑂, 𝑃𝑟𝑖𝑣𝑠, 𝑟𝑡V, Sig(𝑂, 𝑃𝑟𝑖𝑣𝑠, 𝑟𝑡W; 𝑘)⟩
• Access to object O is guarded by a reference monitor; monitor

maintains a list of revoked tags 𝑟𝑡V
• Capability Chains

• Objects can be other capabilities!
• 𝑃 is authorized to perform 𝑜𝑝 on 𝑂 if 𝑃 holds a capability 𝐶8 and
𝑜𝑝 ∈ 𝑃𝑟𝑖𝑣𝑠X holds for every capability 𝐶X in the chain from 𝐶8 to 𝐶,

Keys as capabilities
• Encrypt object
• Decryption method functions as reference monitor:

• Authorization: correct key will decrypt object -> allow access
• Unforgeability: incorrect key will not decrypt

• Note: no notion of separate privileges

Example: Mac keychains

• OSX/iOS password
manager

• uses password-based
encryption (AES-256) to
store username/password
credentials

• supports multiple
keychains

What about privacy?

Exercise 3: Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. How much time did you spend on this video lecture
(including time spent on exercises)?

3. Do you have particular questions you would like me to
address class?

4. Do you have any other comments or feedback?

19

