
CS 181S Fall 2020

Lecture 15: Passwords

Where we were…

• Something you are
fingerprint, retinal scan, hand silhouette, a pulse

• Something you know
password, passphrase, PIN, answers to security questions

• Something you have
physical key, ticket, {ATM, prox, credit} card, token

Password lifecycle
1. Create: user chooses password
2. Store: system stores password with user identifier
3. Use: user supplies password to authenticate
4. Change/recover/reset: user wants or needs to

change password

1. PASSWORD CREATION

Who creates?
• User

Exercise 1: Choosing Passwords
• Guess the top five most common passwords in 2019

Weak passwords
Top 10 passwords in 2019:

1. 123456
2. 123456789
3. qwerty
4. password
5. 1234567
6. 12345678
7. 12345
8. iloveyou
9. 111111
10. 123123

13: 1q2w3e4r, 14: admin, 34: donald

Top 20 passwords suffice to compromise 10% of accounts

Who creates?
• User

• System

• Administrator

Strong passwords
• How to characterize strength?
• One Approach: Difficulty to brute force—"strength" or

"security level"
• Recall: if 2^X guesses required, strength is X

• Suppose passwords are L characters long from an
alphabet of N characters
• Then N^L possible passwords
• Solve for X in 2^X = N^L
• Get X = L log2 N
• This X is aka entropy of password

• Assuming every password is equally likely, X is the Shannon entropy of
the probability distribution (cf. Information Theory)

Exercise 2: Entropy of passwords
• Option A: 8 character passwords chosen uniformly at

random from 26 character alphabet

• Option B: 1 word chosen at random from entire
vocabulary
• average high-school graduate: 50k word vocabulary

Exercise 2: Entropy of passwords
• Option A: 8 character passwords chosen uniformly at

random from 26 character alphabet
• entropy of 8 log2 26 ≈ 37 bits
• but that means abcdefgh equally likely as ifhslgqz

• Option B: 1 word chosen at random from entire
vocabulary
• average high-school graduate: 50k word vocabulary
• entropy of log2 50k ≈ 16 bits
• but that assumes all words are equally likely

Password Recipes
• Problem: guide users into choosing strong passwords
• Solution: password recipes are rules for composing

passwords
• e.g., must have at least one number and one punctuation symbol

and one upper case letter

Entropy estimation
• Entropy estimates [NIST 2006 based on experiments by

Shannon]:
• (assuming English and use of 94 characters from keyboard)
• 1st character: 4 bits
• next 7 characters: 2 bits per character
• characters 9..20: 1.5 bits per character
• characters 21+: 1 bit per character
• user forced to use lower & upper case and non-alphabetics: flat

bonus of 6 bits
• prohibition of passwords found in a 50k word dictionary: 0 to 6 bits,

depending on password length

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf

Entropy estimation
But:
• "[NIST's] notion of password entropy...does not provide a

valid metric for measuring the security provided by
password creation policies."

• Underlying problem: Shannon entropy not a good
predictor of how quickly attackers can crack passwords

Password Cracking
• Evaluate recipes based on
• percentage of passwords cracked
• number of guesses required to crack

• Example recipes:
1. ≥ 8 characters
2. ≥ 8 characters, no blacklisted words ...with various blacklists
3. ≥ 8 characters, no blacklisted words, one uppercase,

lowercase, symbol, and digit ("comprehensive", c8)
4. ≥ 16 characters ("passphrase", b16)

• Results...

Recipe comparison

Passwords
NIST (2017, updated 2020) recommends:
• minimum of 8 characters
• up to 64 characters should be accepted
• all printable ASCII characters and Unicode should be

accepted
• blacklist compromised values, dictionary words, repetative

characters, and context-specific words
• no other security requirements

Should provide guidance on picking a good password (e.g.,
password meter

2. PASSWORD STORAGE

Password Storage
• Passwords typically stored in a file or database indexed

by username
• Strawman idea: store passwords in plaintext
• requires perfect authorization mechanisms
• requires trusted system administrators
• ...

Threat Model: Offline Attack
• Adversary can read files from disk

• Adversary can read process
memory

Note: users make this worse by reusing passwords across systems.

Password Storage
• Want: a function f such that...

1. easy to compute and store f(p) for a password p
2. hard given disclosed f(p) for attacker to recover p
3. hard to trick system by finding password q s.t. q != p yet f(p) =

f(q)

• Encryption would work, but then the key has to live
somewhere

• Cryptographic hash functions suffice!
• one-way property gives (1) and (2)
• collision resistance gives (3)

Hashed passwords
• Each user has:
• username uid
• password p

• System stores: uid, H(p)

Exercise 3: Hashed Passwords
• Consider an alternative authentication protocol where

user sends uid, H(p) and the service compares H(p) to the
stored hash. Would this be more or less secure than
sending the plaintext password? Why?

Hashed passwords are still vulnerable
Assume: attacker does learn password file (offline
guessing attack)
• Hard to invert: i.e., given H(p) to compute p
• But what if attacker didn't care about inverting hash on

arbitrary inputs?
• i.e., only have to succeed on a small set of p's: p1, p2, ..., pn

• Then attacker could build a dictionary...

Dictionary attacks

Dictionary:
• p1, H(p1)
• p2, H(p2)
• ...
• pn, H(pn)

• Dictionary attack: lookup H(p) in dictionary to find p
• And it works because most passwords chosen by humans

are from a relatively small set

Typical passwords
[Schneier quoting AccessData in 2007]:
• 7-9 character root plus a 1-3 character appendage
• Root typically pronounceable, though not necessarily a real word
• Appendage is a suffix (90%) or prefix (10%)

• Dictionary of 1000 roots plus 100 suffixes (= 100k
passwords) cracks about 24% of all passwords

• More sophisticated dictionaries crack about 60% of
passwords within 2-4 weeks

• Given biographical data (zip code, names, etc.) and other
passwords of a user...
• success rate goes up a little
• time goes down to days or hours

https://www.schneier.com/essay-148.html

Salted hashed passwords
• Vulnerability: one dictionary suffices to attack every user
• Vulnerability: passwords chosen from small space
• Countermeasure: include a unique system-chosen

nonce as part of each user's password

Salted hashed passwords
• Each user has:
• username uid
• unique salt s
• password p

• System stores: uid, s, H(s, p)

3. PASSWORD USAGE

Authenticating to a remote server
• Each user has:

• username uid
• unique salt s
• password p

• System stores: uid, s, H(s, p)

1. Hu->L: uid, p
2. L and S: establish secure channel
3. L->S: uid, p
4. S: let h = stored hashed password for uid;

let s = stored salt for uid;
if h = H(s, p)
then uid is authenticated

Threat Model: Online Attack

• Adversary can interact with the
server as a user

When authentication fails
• Guiding principle: the system might be under attack, so

don't make the attacker's job any easier
• Don't leak valid usernames:
• Prompt for username and password in parallel
• Don't reveal which was bad

• Record failed attempts and review
• Perhaps in automated way by administrators
• Perhaps manually by user at next successful login

• Lock account after too many attempts
• Rate limit login

Rate limiting
• Vulnerability: hashes are easy to compute
• Countermeasure: hash functions that are slow to

compute
• Slow hash wouldn't bother user: delay in logging hardly noticeable
• But would bother attacker constructing dictionary: delay multiplied

by number of entries
• Ideally, enough to make constructing a large dictionary prohibitively

expensive
• Examples: bcrypt, scrypt, Argon2,...

Slowing down fast hashes
• Given a fast hash function...
• Slow it down by iterating it many times:

z1 = H(p);
z2 = H(p, z1);
...
z1000 = H(p, z999);
output z1 XOR z2 XOR ... XOR z1000

• Number of iterations is a parameter to control slowdown
• originally thousands
• current thinking is 10s of thousands

• Aka key stretching

Salt and pepper
• Each user has:
• username uid
• unique salt s1
• unique pepper s2
• password p

• System stores: uid, s1, H(s1, s2, p)

Password-Based Encryption
• PBKDF2: Password-based key derivation function [RFC

8018]
• Output: derived key k
• Input:
• Password p
• Salt s
• Iteration count c
• Key length len
• Pseudorandom function (PRF): "looks random" to an adversary

that doesn't know an input called the seed (commony instantiated
with an HMAC)

https://tools.ietf.org/html/rfc8018

4. PASSWORD CHANGE

Password change
Motivated by...
• User forgets password (maybe just recover password)
• System forces password expiration
• Naively seems wise
• Research suggests otherwise

• Attacker learns password:
• Social engineering: deceitful techniques to manipulate a person

into disclosing information
• Online guessing: attacker uses authentication interface to guess

passwords
• Offline guessing: attacker acquires password database for system

and attempts to crack it

Change mechanisms
• Tend to be more vulnerable than the rest of the

authentication system
• Not designed or tested as well
• Have to solve the authentication problem without the benefit of a

password
• Two common mechanisms:
• Security questions
• Emailed passwords

Security questions
• Something you know: attributes of identity established at

enrollment
• Pro: you are unlikely to forget answers
• Assumes: attacker is unlikely to be able to answer

questions
• Con: might not resist targeted attacks
• Con: linking is a problem; same answers re-used in many

systems

Emailed password
• Might be your old password or a new temporary password
• one-time password: valid for single use only, maybe limited

duration

• Assumes: attacker is unlikely to have compromised your
email account

• Assumes: email service correctly authenticates you

Password lifecycle
1. Create: user chooses password
2. Store: system stores password with user identifier
3. Use: user supplies password to authenticate
4. Change/recover/reset: user wants or needs to

change password

Beyond passwords?
• Passwords are tolerated or hated by users
• Passwords are plagued by security problems
• Can we do better?
• Criteria:
• Security
• Usability
• Deployability

Schemes to replace passwords
• Graphical
• Cognitive
• Visual cryptography
• Password managers
• Single Sign-On
• Two-factor authentication

Schemes to replace passwords
• Most schemes do better than passwords on security
• Some schemes do better and some worse on usability
• Every scheme does worse than passwords on

deployability
• Passwords are here to stay, for now
• Schemes offering some variation of single sign on seem

to offer best improvements in security and usability...

Exercise 4: Authentication Examples
• Choose an example of a highly sensitive website (e.g.,

email provider or a payments app) and investigate how
how they handle authentication.

• Choose an example of a low-sensitivity website and
investigate how how they handle authentication.

• For each, answer the following questions: What are their
restrictions on password selection? Do they support
SSO? How do they handle recovery? Do they rely
exclusively on passwords?

Exercise 5: Feedback
1. Rate how well you think this recorded lecture worked
1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. How much time did you spend on this video lecture
(including time spent on exercises)?

3. Do you have particular questions you would like me to
address class?

4. Do you have any other comments or feedback?

50

