
CS 181S Fall 2020

Lecture 12: Certificates

Authentication with Symmetric Encryption

A B

KDC

1. A, B, nA

2. Enc(B,nA,kAB,
Enc(A,kAB;kB);kA)

3. Enc(A,kAB;kB)

4. Enc(nB;kAB)

5. Enc(nB+1;kAB)

SSL/TLS Handshake

ClientHello

ServerHello

ServerKeyExchange

ClientKeyExchange

Version, cipher
suites, nonce Version, cipher

suite, nonce,
certificate

Compute
master secret

Compute
master secret

(optional)

ChangeCipherSpec

ChangeCipherSpec

Encrypted Messages

SSL/TLS Handshake

rC, [ECDH,…]

sign(𝑔!)

𝑔"

Version, cipher
suites, nonce Version, cipher

suite, nonce,
certificate

Compute
ms_p = 𝑔"!
ms = PRF(ms_p,rC,rS) ChangeCipherSpec

ChangeCipherSpec

Encrypted Messages

Compute
ms_p = 𝑔"!
ms = PRF(ms_p,rC,rS)

rS, ECDH

𝑔!

Certificates
• Digital certificate is a document binding together:
• identity of principal
• public key of that principal (might be encryption or verification key)

• binding together = signed
• Notation: Cert(S; I) is a certificate issued by principal I for

principal S
• Cert(S; I) = (id_s, K_S, Sign(id_s, K_S; k_I))
• Issuer I is certifying that K_S belongs to subject id_S

• Fingerprint: H(Cert(S; I))

Public-key infrastructure (PKI)
• System for managing distribution of certificates
• Two main philosophies:
• Decentralized: anarchy, no leaders
• Centralized: oligarchy, leadership by a few elite

PKI Example 1: PGP
• Uses a decentralized PKI philosophy
• "Pretty Good Privacy" [Zimmerman 1991]
• toolset for PKI, encryption, signing of files and emails
• OpenPGP is implemented by GNU Privacy Guard (GPG)

• Users manage a keyring:
• Alice has her own key in her keyring
• When Alice meets up with Bob at a key-signing party...
• She copies his key into her keyring
• She marks Bob as fully or marginally trusted as an introducer
• And she copies other keys he might have collected, too

PKI Example 2: CAs
• Uses a centralized PKI philosophy (at least as evolved in

marketplace)
• Invented (?) by Digital [Gasser et al. 1989], used in early

Netscape browsers
• Certificate authority (CA): principal whose purpose is to

issue certificates

X.509 certificates
[RFC 5280]
Contents of certificate:
• subject distinguished name
• subject public key (and the algorithm)
• issuer distinguished name
• serial number (unique within certs issued by this issuer)
• validity interval (start and end time)
• extensions...
• issuer's signature on the above (and the name of the

algorithm)

http://tools.ietf.org/html/rfc5280

Finding a useful certificate
Certificate chain: sequence of certificates that certify each
other
• on one end, a certificate for the principal you want to

authenticate
• on the other end, a certificate for a principal you already

know: the root of trust
• you must trust every issuer in the chain to issue

certificates

A constraint extension
• "Basic constraint": two values:
• a Boolean: is this key permitted to be used to verify other

certificates? i.e., can it be an issuer's key?
• At best redundant w.r.t key usage extension, which itself is more precise

• an integer: number of intermediate certificates permitted to follow
this one in a chain

• ought to be marked critical

Using a CA
• Your system comes pre-installed with CA's self-signed

certificate Cert(CA; CA)
• When you receive a message signed by Alice:
• you contact CA to get Cert(Alice; CA)
• or Alice just includes that certificate with her message

Exercise 1: Using A CA
• In your web browser, visit a website you frequently use

over https
• Inspect the TLS certificate for that web server:
1) How many certificates are in the certificate chain?
2) Who is the root CA for that certificate chain?

CAs and web browsers
• Web server has certificate Cert(server; CA) installed
• Server’s identity is its URL
• CA is a root for which Cert(CA; CA) is installed in browser

• Browser authenticates web server
• Using server’s URL and public key from certificate

Many CAs
• There can't be only one
• No single CA is going to be trusted by all the world's governments,

militaries, businesses
• Though within an organization such trust might be possible

• So there are many
• Around 1500 observed on public internet
• Your OS and/or browser comes with some pre-installed

• Organizations act as their own CA, e.g....
• Company issues certificates to employees for VPN
• Bank issues certificates to customers
• Central bank issues certificates to other banks
• Manufacturer issues certificates to sensing devices

Exercise 2: Root CAs
• How many root CA certificates are installed on your

computer for your preferred browser?
• Is the root CA you identified in Exercise 1 on that list?

Enrollment with a CA
• You create a key pair: you do this so that CA doesn't

learn your private key
• You generate a certificate signing request (CSR); it

contains the identity you are claiming
• You send the CSR to a CA, perhaps along with payment
• The CA verifies your identity (maybe)
• The CA signs your key, thus creating a certificate, and

sends certificate to you

Issuing certificates
Conflicting goals:
• CA private signing key must be kept secret
• the public verification key is pre-installed on user systems; hard to

update
• if ever leaked, signing key could be used to forge certificates
• easy way to realize goal: keep it in cold storage

• CA private signing key must be available for use
• to sign new certificates when users request them
• easy way to realize goal: keep it in computer's memory

Issuing certificates
Solution: use root and intermediate CAs
• root CA: the certificate at root of trust in a chain; pre-

installed; key kept in highly secure storage
• intermediate CA(s): certified by root CA, themselves

certify user keys; might be run by a different organization
than root

PROBLEMS WITH PKI

Problem 1: Revocation
• Keys (subject's, issuer's) get compromised
• Or subject leaves an organization

...certificates therefore need to be revoked
• There's no perfect solution
• Fast expiration
• Certificate revocation lists (CRLs)
• Online certificate validation

Revocation
Fast expiration
• Idea:
• Validity internal is short, e.g. 10 min to 24 hr
• A kind of revocation thus happens automatically
• Any compromise is bounded

• Problem:
• CAs have to issues new certificates frequently, including checking

identities
• Machines have to update certificates frequently

Revocation
Certificate revocation lists (CRLs)
• Idea:
• CA posts list of revoked certificates
• Clients download and check every time they need to validate

certificate
• Problems:
• Clients don't (because usability)
• Or they cache, leading to TOCTOU attack
• CRL must always be available (so an attractive DoS target)

• Chromium does this, with a CRL limited to 250kb

https://dev.chromium.org/Home/chromium-security/crlsets

Revocation
Online certificate validation
• Idea:
• CA runs validation server
• Clients contact it each time to validate certificate

• Problems:
• Clients don't
• Server must always be available (so an attractive DoS target)
• Reveals to CA which websites you want to access

Revocation
Online certificate validation
• Follow-on solution: stapling
• Certificates must be accompanied by fresh assertion from CA that

certificate is still valid
• Whoever presents certificate to client is responsible for acquiring

assertion
• Firefox does this but doesn't hard fail because "[validation

servers] aren't yet reliable enough”
• Unless web site has previously served up a certificate to browser

with Must Staple extension set

https://wiki.mozilla.org/CA:ImprovingRevocation

Problem 2: Authority
• CAs go rogue, get hacked, issue certificates that they

should never have issued
• e.g., Dutch CA DigiNotar (2011), which was included in many root

sets: 500 bogus certificates issued, including for Google, Yahoo,
Tor

• Missing a means for authorization of who may issue
certificates for which principals

Authority
There's no perfect solution
• Key pinning: upon first connection to a server, client

learns a set of public keys for server; in future
connections, certificate must contain one of those keys

• Certificate transparency: maintain a public log of issued
certificates; require any presented certificate to be in that
log; monitor log to notice misbehavior

• Certificate Authority Authorization (CAA): piggyback on
DNS system; DNS record for entity specifies allowed CAs;
a good CA won’t issue cert unless they are authorized

• DNS-based Authentication of Named Entities (DANE):
piggyback like CAA; client checks whether cert comes
from authorized CA

Exercise 4: Feedback
1. Rate how well you think this recorded lecture worked
1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. How much time did you spend on this video lecture
(including time spent on exercises)?

3. Do you have particular questions you would like me to
address in this week's problem session?

4. Do you have any other comments or feedback?

31

