Lecture 11: Authentication Protocols (cont'd)

CS 181S Fall 2020

Review: Authentication

- Threat: attacker who controls the network
 - Dolev-Yao model: attacker can read, modify, delete messages
- Vulnerability: communication channel between sender and receiver can be controlled by other principals
- Harm: attacker can pretend to be someone else (violating security goals)
- Countermeasure: authentication protocols

Review: Authentication Protocols

 An authentication protocol allows a principal receiving a message to verify the identity of the principal that sent that message

Assumptions

- Assume Alice and Bob have a shared secret key k
- Assume that symmetric-key crypto works
- Assume there is a trusted Key Distribution Center (KDC)
 and that all principals have a shared key with the KDC

Goals

- Alice and Bob should acquire a shared key that they can use to securely communicate
- Alice should be convinced that she is talking to Bob
- Bob should be convinced that he is talking to Alice

```
    A -> KDC: A, B
    KDC -> A: A, B, Enc(k; k_A)
    KDC -> B: A, B, Enc(k; k_B)
```

```
    A -> KDC: A, B
    KDC -> A: A, B, Enc(k; k_A), Enc(k; k_B)
    A -> B: A, B, Enc(k; k B)
```

Threat Model

- Dolev-Yao attacker
 - controls the network, can read, modify, create packets
- A replay attack occurs when an adversary repeats fragments of a previous protocol run
- A reflection attack occurs when an adversary sends messages from an engoing protocol back to the originator
- A man-in-the-middle attack occurs when an adversary secretly relays (and potentially changes) communications between two principals who believe they are communicating directly with eachother

Exercise 1: Replay Attacks

Is this protocol vulnerable to a replay attack?

```
    A -> KDC: A, B
    KDC -> A: A, B, Enc(k; k_A), Enc(k; k_B)
    A -> B: A, B, Enc(k; k B)
```

Exercise 1: Replay Attacks

Is this protocol vulnerable to a replay attack?

```
    A -> KDC: A, B
    KDC -> A: A, B, Enc(k; k_A), Enc(k; k_B)
    A -> B: A, B, Enc(k; k_B)
    A -> T: A, B
    T -> A: A, B, Enc(k; k_A), Enc(k; k_B)
    A -> B: A, B, Enc(k; k_B)
```

```
    A -> KDC: A, B, r
    KDC -> A: A, B, Enc(k,r;k_A), Enc(k;k_B)
    A -> B: A, B, Enc(k; k B)
```

MITM Attack

```
1. A -> T: A, B, r

1) T -> KDC: A, T, r

2) KDC -> T: A, T, Enc(k, r; k_A), Enc(k; k_T)

1) T -> KDC: T, B, r

2) KDC -> T: A, T, Enc(k2, r; k_T), Enc(k2; k_B)

2. T -> A: A, B, Enc(k, r; k_A), Enc(k2; k_B)

3. A -> B: A, B, Enc(k2; k B)
```

```
    A -> KDC: A, B, r
    KDC -> A: A, B, Enc(k, r, Enc(k; k_B); k_A)
    A -> B: A, B, Enc(k; k B)
```

Attack on Protocol 5

```
    T -> KDC: T, B, r
    KDC -> T: T, B, Enc(k, r, Enc(k; k_B);k_T)
    T -> B: A, B, Enc(k; k B)
```

```
    A -> KDC: A, B, r
    KDC -> A: A, B, Enc(k,r,Enc(A,B,k; k_B);k_A)
    A -> B: A, B, Enc(A,B,k; k B)
```

Attack on Protocol 6

```
    A -> T: A, B, r
    T -> KDC: A, T, r
    KDC -> T: A, T, Enc(k, r, Enc(A,T,k; k_T);k_A)
    T -> A: A, B, Enc(k, r, Enc(A,T,k; k_T);k_A)
    A -> T: A, B, Enc(A,T,k; k T)
```

```
    A -> KDC: A, B, r
    KDC -> A: Enc(A,B,k,r,Enc(A,B,k; k_B);k_A)
    A -> B: A, B, Enc(A,B,k; k B)
```

Protocol 8: Needham-Schroeder

```
    A -> KDC: A, B, r
    KDC -> A: Enc(A,B,k,r,Enc(A,B,k; k_B);k_A)
    A -> B: A, B, Enc(A,B,k; k_B)
    B -> A: A, B, Enc(r2; k)
    A -> B: A, B, Enc(r2+1; k)
```

Exercise 2: MITM Attacks

Consider the following variant of Needham-Schroeder. Is this protocol vulnerable to a MITM attack?

```
    A -> KDC: A, B, r
    KDC -> A: Enc(A,B,r;k_A),Enc(r,k; k_A)
    KDC -> B: Enc(A,B,r;k_B),Enc(r,k; k_B)
    B -> A: A, B, Enc(r2; k)
    A -> B: A, B, Enc(r2+1; k)
```

Exercise 2: MITM Attacks

Consider the following variant of Needham-Schroeder. Is this protocol vulnerable to a MITM attack?

```
1. A \rightarrow T: A, B, r
  1) T \rightarrow KDC: A, B, r
  2) KDC \rightarrow T: Enc(A,B,r;k A), Enc(r,k;k A)
  3) KDC \rightarrow T: Enc(A,B,r;k B), Enc(r,k;k B)
  1) T \rightarrow KDC: A, T, r
  2) KDC \rightarrow T: Enc(A,T,r;k A), Enc(r,k2;k A)
  3) KDC \rightarrow T: Enc(A,T,r;k T), Enc(r,k2;k T)
  1) T \rightarrow KDC: T, B, r
  2) KDC \rightarrow T: Enc(T,B,r;k T), Enc(r,k3;k T)
  3) KDC \rightarrow T: Enc(T,B,r;k B), Enc(r,k3;k B)
2. T \rightarrow A: Enc(A,B,r;k A), Enc(r,k2; k A)
3. T \rightarrow B: Enc(A,B,r;k B), Enc(r,k3; k B)
4. B -> T: A, B, Enc(r2; k3)
5. T \rightarrow B: A, B, Enc(r2+1; k3)
  1. T \rightarrow A: A, B, Enc(r2; k2)
  2. A -> T: A, B, Enc(r2+1; k2)
```

Protocol 8: Needham-Schroeder

```
    A -> KDC: A, B, r
    KDC -> A: Enc(A,B,k,r,Enc(A,B,k; k_B);k_A)
    A -> B: A, B, Enc(A,B,k; k_B)
    B -> A: A, B, Enc(r2; k)
    A -> B: A, B, Enc(r2+1; k)
```

Solution #1: More nonces

```
    A -> B: A, B
    B -> A: A, B, r3
    A -> KDC: A, B, r, r3
    KDC -> A: Enc(A,B,k,r,Enc(A,B,k,r3; k_B);k_A)
    A -> B: A, B, Enc(A,B,k,r3; k_B)
    B -> A: A, B, Enc(r2; k)
    A -> B: A, B, Enc(r2+1; k)
```

Solution #2: Timestamps

```
    A -> KDC: A, B, r,
    KDC -> A: Enc(A,B,k,r,Enc(A,B,k,t; k_B);k_A)
    A -> B: A, B, Enc(A,B,k,t; k_B)
    B -> A: A, B, Enc(r2; k)
    A -> B: A, B, Enc(r2+1; k)
```

Solution #3: Otway-Rees

Type Attack

```
    A -> B: n, A, B, Enc(r1,n,A,B;k_A)
    B -> KDC: n, A, B, Enc(r1,n,A,B;k_A), Enc(r2,n,A,B;k_B)
    T -> B: n, Enc(r1,n,A,B;k_A), Enc(r2,n,A,B;k_B)
    B -> A: n, Enc(r1,n,A,B;k A)
```

Exercise 3: Type Attacks

Consider the following variant of Otway-Rees

```
1. A -> B: n, A, B, Enc(r1,n,A,B;k_A)

2. B -> KDC: n, A, B, Enc(r1,n,A,B;k_A),

Enc(r2,n,A,B;k_B)

3. KDC -> B: n, Enc(r1+1,k;k_A),

Enc(r2+1, k;k_B)

4. B -> A: n, Enc(r1+1,k;k A)
```

Would this protocol be vulnerable to a type attack?

Authentication in Practice

Exercise 4: Feedback

- 1. Rate how well you think this recorded lecture worked
 - 1. Better than an in-person class
 - 2. About as well as an in-person class
 - 3. Less well than an in-person class, but you still learned something
 - 4. Total waste of time, you didn't learn anything
- 2. How much time did you spend on this video lecture (including time spent on exercises)?
- 3. Do you have particular questions you would like me to address in this week's problem session?
- 4. Do you have any other comments or feedback?