
CS 181S Fall 2020

Crypto for Integrity

Protection of integrity
• Threat: attacker who controls the network

• Dolev-Yao model: attacker can read, modify, delete messages
• Vulnerability: communication channel between sender

and receiver can be controlled by other principals
• Harm: information contained in messages can be

changed by attacker (violating integrity)
• Countermeasure: more crypto

Encryption and integrity

Encryption and integrity

NO!
• Plaintext block might be random number, and recipient

has no way to detect change in random number
• Attacker might substitute ciphertext from another

execution of same protocol (replay)
• Adversary can modify encrypted plaintext in predictable

ways (malleability)get integrity solely from encryption

Malleable Ciphertexts
• AES-CBC

• Adversary can truncate blocks from end of message
• AES-CTR

• Flipping bits of plaintext flips bits of ciphertext
• RSA

• Adversary can multiply message

MAC algorithms
• Gen(1&): generate a key 𝑘 of length 𝑛
•MAC(𝑚; 𝑘): produce a tag 𝑡 for message 𝑚
• Verify 𝑚, 𝑡; 𝑘 : returns 1 if 𝑚 was the message
used to generate 𝑡 and 0 otherwise

• A MAC is correct if the tags produced by MAC
are valid, ie, Verify 𝑚,MAC(𝑚, 𝑡; 𝑘) evaluates to 1

• A MAC is secure if it is hard for a PPT algorithm
to forge a valid tag without the key

MAC MAC

Real-world MACs
• CBC-MAC

• Parameterized on a block cipher
• Core idea: encrypt message with block cipher in CBC mode, use

very last ciphertext block as the tag

• HMAC
• Parameterized on a hash function
• Core idea: hash message together with key
• Your everyday hash function isn't good enough...

Hash functions
• Input: arbitrary size bit string
• Output: fixed size bit string

• compression: size of the output is smaller than the input
• diffusion: minimize collisions (and clustering)

Cryptographic hash functions
• Stronger requirements than (plain old) hash

functions
• Goal: hash is compact representation of

original like a fingerprint
• Hard to find 2 people with same fingerprint
• Whether you get to pick pairs of people, or whether

you start with one person and find another
...collision-resistant

• Given person easy to get fingerprint
• Given fingerprint hard to find person

...one-way

Real-world hash functions
• MD5: Ron Rivest (1991)

• 128 bit output
• Collision resistance broken 2004-8
• Can now find collisions in seconds
• Don't use it

• SHA-1: NSA (1995)
• 160 bit output
• Theoretical attacks that reduce strength to less than 80 bits
• As of 2017, “practical attack” on PDFs: https://shattered.io/
• Industry has been deprecating SHA-1 over the couple years

Real world hash functions
• SHA-2: NSA (2001)

• Family of algorithms with output sizes {224, 256, 385, 512}
• In principle, could one day be vulnerable to similar attacks as

SHA-1

• SHA-3: public competition (won in 2012, standardized by
NIST in 2015)
• Same output sizes as SHA-2
• Plus a variable-length output called SHAKE

Exercise 1: MACs
• Consider a hash function f that breaks a value into 4-byte

blocks and returns the xor of these blocks. Would this
function make a good HMAC? Why or why not?

1. compression
2. diffusion
3. collision-resistant
4. one-way

Exercise 1: MACs
• Consider a hash function f that breaks a value into 4-byte

blocks and returns the xor of these blocks. Would this
function make a good HMAC? Why or why not?

1. compression
2. diffusion
3. collision-resistant
4. one-way

Encrypt and MAC
0. k_E = Gen_E(len)

k_M = Gen_M(len)
1. A: c = Enc(m; k_E)

t = MAC(m; k_M)
2. A -> B: c, t
3. B: m' = Dec(c; k_E)

t' = MAC(m'; k_M)
if t = t'
then output m'
else abort

m

c t

Encrypt and MAC
• Pro: can compute Enc and MAC in parallel
• Con: MAC must protect confidentiality

• Example: ssh (Secure Shell) protocol
• recommends AES-128-CBC for encryption
• recommends HMAC with SHA-2 for MAC

Encrypt then MAC
1. A: c = Enc(m; k_E)

t = MAC(c; k_M)
2. A -> B: c, t
3. B: t' = MAC(c; k_M)

if t = t'
then output Dec(c; k_E)
else abort

m

c t

Encrypt then MAC
• Pro: provably most secure of three options [Bellare &

Namprepre 2001]
• Pro: don't have to decrypt if MAC fails

• resist DoS

• Example: IPsec (Internet Protocol Security)
• recommends AES-CBC for encryption and HMAC-SHA1 for MAC,

among others
• or AES-GCM

MAC then encrypt
1. A: t = MAC(m; k_M)

c = Enc(m,t; k_E)
2. A -> B: c
3. B: m',t' = Dec(c; k_E)

if t' = MAC(m'; k_M)
then output m'
else abort

m

c

MAC then encrypt
• Pro: provably next most secure

• and just as secure as Encrypt-then-MAC for strong enough MAC
schemes

• HMAC and CBC-MAC are strong enough

• Example: SSL (Secure Sockets Layer)
• Many options for encryption, e.g. AES-128-CBC
• For MAC, standard is HMAC with many options for hash, e.g. SHA-

256

Aside: Key reuse
• Never use same key for both encryption and MAC

schemes
• Principle: every key in system should have unique

purpose

Authenticated encryption
• Newer block cipher modes designed to provide

confidentiality and integrity
• OCB: Offset Codebook Mode
• CCM: Counter with CBC-MAC Mode
• GCM: Galois Counter Mode

DIGITAL SIGNATURES

Recall: Key pairs
• Instead of sharing a key between pairs of principals...
• ...every principal has a pair of keys

• public key: published for the world to see
• private key: kept secret and never shared

Key pair terminology

Encryption Digital Signatures

Public key Encryption key Verification key

Private key Decryption key Signing key

Digital Signatures
• Gen(1&): generate a keypair (𝑝𝑘, 𝑠𝑘) of length 𝑛
• Sign(𝑚; 𝑠𝑘): produce a signature 𝜎 for message 𝑚
• Verify 𝑚, 𝜎; 𝑝𝑘 : returns 1 if 𝑚 was the message
used to generate 𝜎 and 0 otherwise

• A digital signature scheme is correct if
Verify 𝑚, Sign(𝑚, 𝑡; 𝑠𝑘 ; pk) evaluates to 1

• A digital signature is secure if it is hard for a PPT
algorithm to forge a valid signature without 𝑠𝑘

MAC MAC

RSA
• Core ideas are the same as RSA encryption, but

backward
• Intuition: “RSA sign = encrypt with private key”
• Gen(len):

• Pick primes 𝑝, 𝑞, define 𝑛 = 𝑝 ⋅ 𝑞
• Choose 𝑒, 𝑑 such that 𝑒𝑑 = 1 mod (𝑝 − 1)(𝑞 − 1)
• 𝑝𝑘 = 𝑛, 𝑒 , 𝑠𝑘 = (𝑝, 𝑞, 𝑑)

• Sign(m; sk)

• Verify(m, 𝜎; pk):
𝑚 == 𝜎F mod 𝑛

𝜎 = 𝑚G mod 𝑛

Exercise 2: Forging Signatures
• Assume that an adversary convinces Alice to sign two

messages 𝑚! and 𝑚" with the same key, producing
signatures 𝜎! and 𝜎". How could this adversary forge a
signed message with the value 𝑚!𝑚"?

Sign 𝑚!𝑚" = 𝑚!𝑚"
mod 𝑛

= 𝑚!
#𝑚"

mod 𝑛
= (𝑚!

mod 𝑛)(𝑚"
mod 𝑛) mod 𝑛

= 𝜎!𝜎" mod 𝑛

RSA
• Core ideas are the same as RSA encryption
• Intuition: “RSA sign = encrypt with private key”
• Truth (in real world, outside of textbooks):

• there's a core RSA function R that works with either pk or sk
• RSA encrypt = do some prep work on m then call R with pk
• RSA sign = do different prep work on m then call R with sk
• Prep work: recall “textbook RSA is insecure”

• (For encryption: OAEP)
• For signatures: PSS (probabilistic signature scheme)

• Also need to handle long messages…

Signatures with hashing
1. A: s = Sign(H(m); k_A)
2. A -> B: m, s
3. B: accept if Ver(H(m); s; K_A)

DSA
DSA: Digital Signature Algorithm [Kravitz 1991]
• Standardized by NIST and made available royalty-free in

1991/1993
• Used for decades without any serious attacks
• Closely related to Elgamal encryption
• Usual implemented with elliptic curve (ECDSA)

Blind signatures
[Chaum 1983]
• Purpose: signer doesn’t know what they are signing
• Two additional algorithms: Blind and Unblind
• Unblind(Sign(Blind(m); k)) = Sign(m; k)
• Uses: e-cash, e-voting

Group signatures
[Chaum and van Heyst 1991]
• Purpose: one member of group signs anonymously on

behalf of group
• Introduces a group manager who controls membership
• Two new protocols: Join and Revoke, to manage

membership
• One new algorithm: Open, which manager can run to

reveal who signed a message

Exercise 3: Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. How much time did you spend on this video lecture (including
time spent on exercises)?

3. Do you have particular questions you would like me to
address in this week's problem session?

4. Do you have any other comments or feedback?

33

