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Lecture 7: Public-Key Cryptography



Crypto Thus Far…



Key pairs
• Instead of sharing a key between pairs of principals...
• ...every principal has a pair of keys

• public key: published for the world to see
• private key: kept secret and never shared



(Public-Key) Encryption algorithms
• Gen(1&):  generate a keypair (pk, sk) of length n
• Enc(𝑚; 𝑝𝑘): encrypt message under public key pk
• Dec 𝑐; 𝑠𝑘 : decrypt ciphertext c with secret key sk

Enc

Dec

Gen, Enc, Dec is a public-key encryption scheme aka 
cryptosystem



RSA
[Rivest, Shamir, Adleman 1977]
Shared Turing Award in 2002:  ingenious 
contribution to making public-key crypto

• Gen(len): 
• Pick primes 𝑝, 𝑞, define 𝑛 = 𝑝 ⋅ 𝑞
• Choose 𝑒, 𝑑 such that 𝑒𝑑 = 1 mod (𝑝 − 1)(𝑞 − 1)
• 𝑝𝑘 = 𝑛, 𝑒 , 𝑠𝑘 = (𝑝, 𝑞, 𝑑)

• Enc(m, pk)

• Dec(c, sk):
𝑐 = 𝑚4 mod 𝑛

𝑚 = 𝑐5 mod 𝑛



Exercise 1: RSA 
• Let 𝑝𝑘 = 𝑛, 𝑒 = (21, 5) and 𝑠𝑘 = 𝑝, 𝑞, 𝑑 = (3, 7, 5)
• Observe that 𝑒𝑑 = 5 ⋅ 5 = 25 = 1 mod 12

1. Compute 𝑐 = Enc(17; 𝑝𝑘)

2. Compute Dec(𝑐; 𝑠𝑘)

𝑐 = Enc 17; 21, 5 = 176 mod 21 = 1419857 mod 21 = 5

Dec 𝑐; 𝑠𝑘 = Dec 5; 3,7,5 = 56 mod 21 = 3125 mod 21 = 17



RSA
• Theorem: RSA is a correct public-key encryption scheme.
• Theorem: 𝑚B mod 𝑝𝑞 C mod 𝑝𝑞 == 𝑚

Dec Enc 𝑚; 𝑝𝑘 ; 𝑠𝑘 = 𝑚4 mod 𝑝𝑞 5 mod 𝑝𝑞

= 𝑚4 5 mod 𝑝𝑞

= 𝑚45 mod 𝑝𝑞

𝑚45 mod 𝑝 = 𝑚789(:;7)(<;7) mod 𝑝

=𝑚 ⋅ (𝑚:;7) 9(<;7) mod 𝑝

= 𝑚 ⋅ (𝑚:;7 mod 𝑝) 9(<;7) mod 𝑝

= 𝑚 ⋅ 1 9 <;7 mod 𝑝
= 𝑚 mod 𝑝

𝑚45 mod 𝑞 = 𝑚789(:;7)(<;7) mod 𝑞

= 𝑚 ⋅ (𝑚<;7) 9(:;7) mod 𝑞

= 𝑚 ⋅ (𝑚<;7 mod 𝑝) 9(:;7) mod 𝑞

= 𝑚 ⋅ 1 9 :;7 mod 𝑞
= 𝑚 mod 𝑞

= 𝑚 mod 𝑝𝑞



RSA
• Theorem: RSA is a secure public-key encryption scheme.

• Rabin Encryption (integer factorization)
• ElGamal Encryption (discrete log)
• Pailler Encryption (composite residuosity)
• Elliptic Curve Integrated Encryption Scheme (comp. DH)



Problems with Textbook RSA
• Deterministic:  given same plaintext and key, always 

produces the same ciphertext

• Small numbers: if m^e < n, then log is easy to compute
• Big numbers: if m > n, can't compute do math mod n

• Side channel attacks: interfaces can leak information 
about secret key

• Key Management: no secure place to store the secret key

• Quantum Computers: provably breakable with different 
hardware



Solution 1: Padding
• PKCS#1 v1.5: 0x00 0x02 [non-zero bytes] 0x00 [message]

• Vulnerable to a padding oracle attack!
• OAEP (Optimal Asymmetric Encryption Padding)

• Security proof (with assumptions)



Exercise 2: OAEP
• Define a function to compute m given values X and Y, 

constants k0 and k1, and hash functions G and H



Exercise 2: OAEP
• Define a function to compute m given values X and Y, 

constants k0 and k1, and hash functions G and H

extract_m(X, Y){
r = H(X)^Y;
m' = X^G(r);
m = m' >> k1;

return m;
}



Problems with Textbook RSA
• Deterministic:  given same plaintext and key, always 

produces the same ciphertext

• Small numbers: if m^e < n, then log is easy to compute
• Big numbers: if m > n, can't compute do math mod n

• Side channel attacks: interfaces can leak information 
about secret key

• Key Management: no secure place to store the secret key

• Quantum Computers: provably breakable with different 
hardware



Solution 2: Hybrid encryption
• Assume:

• Symmetric encryption scheme (Gen_SE, Enc_SE, Dec_SE)
• Public-key encryption scheme (Gen_PKE, Enc_PKE, Dec_PKE)

• Use public-key encryption to establish a shared session key
• Avoids quadratic problem, assuming existence of phonebook
• Avoids problem of key distribution

• Use symmetric encryption to exchange long plaintext 
encrypted under session key
• Gain efficiency of block cipher and mode



Protocol to exchange encrypted message

0.  B: (pk_B, sk_B) = Gen_PKE(len_PKE)
publish (B, pk_B)

1.  A: k_s = Gen_SE(len_SE)
c1 = Enc_PKE(k_s; pk_B)
c2 = Enc_SE(m; k_s) 

2.  A -> B: c1, c2
3.  B: k_s = Dec_PKE(c1; sk_B)

m = Dec_SE(c2; k_s)

m



Session keys
• If key compromised, only those messages encrypted 

under it are disclosed
• Used for a brief period then discarded

• cryptoperiod:  length of time for which key is valid
• in this case, for a single (long) message
• not intended for reuse in future messages

• only intended for unidirectional usage:  
• A->B, not B->A



Problems with Textbook RSA
• Deterministic:  given same plaintext and key, always 

produces the same ciphertext

• Small numbers: if m^e < n, then log is easy to compute
• Big numbers: if m > n, can't compute do math mod n

• Side channel attacks: interfaces can leak information 
about secret key

• Key Management: no secure place to store the secret key

• Quantum Computers: provably breakable with different 
hardware



Square-and-Multiply
int modular_exp(x, n, p){

res = 1;
while (n > 0) {

if (n % 2 == 1){
res = res * x % p;

}
x = x^2 % p;
n >> 1;

}
return res;

}



Exercise 3: Square-and Multiply
• Compute 3D mod 21 using square and multiply

res = 1 x = 3 n = 5

res = 3 x = 9 n = 2

res = 12 x = 9 n = 0

res = 3 x = 18 n = 1

int modular_exp(x, n, p){
res = 1;
while (n > 0) {

if (n % 2 == 1){
res = res * x % p;

}
x = x^2 % p;
n >> 1;

}
return res;

}



Side Channels

• Power
• Timing
• EM Radiation
• Acoustics



Solution 3: Blinded RSA
[Rivest, Shamir, Adleman 1977]
Shared Turing Award in 2002:  ingenious 
contribution to making public-key crypto

• Gen(len): 
• Pick primes 𝑝, 𝑞
• Choose 𝑒, 𝑑 such that 𝑒𝑑 = 1 mod lcm(𝑝 − 1, 𝑞 − 1)
• 𝑝𝑘 = 𝑛, 𝑒 , 𝑠𝑘 = (𝑝, 𝑞, 𝑑)

• Enc(m, pk)

• Dec(c, sk):
𝑐 = 𝑚4 mod 𝑛

𝑚 = ((𝑐𝑟)5 mod 𝑛) ⋅ 𝑟;5



Problems with Textbook RSA
• Deterministic:  given same plaintext and key, always 

produces the same ciphertext

• Small numbers: if m^e < n, then log is easy to compute
• Big numbers: if m > n, can't compute do math mod n

• Side channel attacks: interfaces can leak information 
about secret key

• Key Management: no secure place to store the secret key

• Quantum Computers: provably breakable with different 
hardware



Solution 4: Key Management
• Store keys offline
• Store keys in protected files
• Memorize the keys (sort of)



Password-Based Encryption
• PBKDF2: Password-based key derivation function [RFC 

8018]
• Output:  derived key k
• Input:

• Password p
• Salt s
• Iteration count c
• Key length len
• Pseudorandom function (PRF):  "looks random" to an adversary 

that doesn't know an input called the seed (commony instantiated 
with an HMAC)

https://tools.ietf.org/html/rfc8018


PBKDF2
Algorithm:
• F(p, s, i, c) = U(1) XOR ... XOR U(c)

• U(1) = PRF(s, i; p)
• U(j) = PRF(U(j-1); p)
• F is in essence a salted iterated hash...

• k = F(p, s, 1, c) || F(p, s, 2, c) || ... || F(p, s, n, c) 
• enough copies to reach keylen
• || denotes bit concatenation



Problems with Textbook RSA
• Deterministic:  given same plaintext and key, always 

produces the same ciphertext

• Small numbers: if m^e < n, then log is easy to compute
• Big numbers: if m > n, can't compute do math mod n

• Side channel attacks: interfaces can leak information 
about secret key

• Key Management: no secure place to store the secret key

• Quantum Computers: provably breakable with different 
hardware



Solution 5: Post-Quantum Cryptography



Exercise 4: Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. How much time did you spend on this video lecture (including 
time spent on exercises)?

3. Do you have particular questions you would like me to 
address in this week's problem session?

4. Would you prefer to keep using this asynchronous/flipped 
classroom approach or would you prefer to switch to 
synchronous teaching?

5. Do you have any other comments or feedback?

28


