
CS 181S Fall 2020

Lecture 7: Public-Key Cryptography

Crypto Thus Far…

Key pairs
• Instead of sharing a key between pairs of principals...
• ...every principal has a pair of keys

• public key: published for the world to see
• private key: kept secret and never shared

(Public-Key) Encryption algorithms
• Gen(1&): generate a keypair (pk, sk) of length n
• Enc(𝑚; 𝑝𝑘): encrypt message under public key pk
• Dec 𝑐; 𝑠𝑘 : decrypt ciphertext c with secret key sk

Enc

Dec

Gen, Enc, Dec is a public-key encryption scheme aka
cryptosystem

RSA
[Rivest, Shamir, Adleman 1977]
Shared Turing Award in 2002: ingenious
contribution to making public-key crypto

• Gen(len):
• Pick primes 𝑝, 𝑞, define 𝑛 = 𝑝 ⋅ 𝑞
• Choose 𝑒, 𝑑 such that 𝑒𝑑 = 1 mod (𝑝 − 1)(𝑞 − 1)
• 𝑝𝑘 = 𝑛, 𝑒 , 𝑠𝑘 = (𝑝, 𝑞, 𝑑)

• Enc(m, pk)

• Dec(c, sk):
𝑐 = 𝑚4 mod 𝑛

𝑚 = 𝑐5 mod 𝑛

Exercise 1: RSA
• Let 𝑝𝑘 = 𝑛, 𝑒 = (21, 5) and 𝑠𝑘 = 𝑝, 𝑞, 𝑑 = (3, 7, 5)
• Observe that 𝑒𝑑 = 5 ⋅ 5 = 25 = 1 mod 12

1. Compute 𝑐 = Enc(17; 𝑝𝑘)

2. Compute Dec(𝑐; 𝑠𝑘)

𝑐 = Enc 17; 21, 5 = 176 mod 21 = 1419857 mod 21 = 5

Dec 𝑐; 𝑠𝑘 = Dec 5; 3,7,5 = 56 mod 21 = 3125 mod 21 = 17

RSA
• Theorem: RSA is a correct public-key encryption scheme.
• Theorem: 𝑚B mod 𝑝𝑞 C mod 𝑝𝑞 == 𝑚

Dec Enc 𝑚; 𝑝𝑘 ; 𝑠𝑘 = 𝑚4 mod 𝑝𝑞 5 mod 𝑝𝑞

= 𝑚4 5 mod 𝑝𝑞

= 𝑚45 mod 𝑝𝑞

𝑚45 mod 𝑝 = 𝑚789(:;7)(<;7) mod 𝑝

=𝑚 ⋅ (𝑚:;7) 9(<;7) mod 𝑝

= 𝑚 ⋅ (𝑚:;7 mod 𝑝) 9(<;7) mod 𝑝

= 𝑚 ⋅ 1 9 <;7 mod 𝑝
= 𝑚 mod 𝑝

𝑚45 mod 𝑞 = 𝑚789(:;7)(<;7) mod 𝑞

= 𝑚 ⋅ (𝑚<;7) 9(:;7) mod 𝑞

= 𝑚 ⋅ (𝑚<;7 mod 𝑝) 9(:;7) mod 𝑞

= 𝑚 ⋅ 1 9 :;7 mod 𝑞
= 𝑚 mod 𝑞

= 𝑚 mod 𝑝𝑞

RSA
• Theorem: RSA is a secure public-key encryption scheme.

• Rabin Encryption (integer factorization)
• ElGamal Encryption (discrete log)
• Pailler Encryption (composite residuosity)
• Elliptic Curve Integrated Encryption Scheme (comp. DH)

Problems with Textbook RSA
• Deterministic: given same plaintext and key, always

produces the same ciphertext

• Small numbers: if m^e < n, then log is easy to compute
• Big numbers: if m > n, can't compute do math mod n

• Side channel attacks: interfaces can leak information
about secret key

• Key Management: no secure place to store the secret key

• Quantum Computers: provably breakable with different
hardware

Solution 1: Padding
• PKCS#1 v1.5: 0x00 0x02 [non-zero bytes] 0x00 [message]

• Vulnerable to a padding oracle attack!
• OAEP (Optimal Asymmetric Encryption Padding)

• Security proof (with assumptions)

Exercise 2: OAEP
• Define a function to compute m given values X and Y,

constants k0 and k1, and hash functions G and H

Exercise 2: OAEP
• Define a function to compute m given values X and Y,

constants k0 and k1, and hash functions G and H

extract_m(X, Y){
r = H(X)^Y;
m' = X^G(r);
m = m' >> k1;

return m;
}

Problems with Textbook RSA
• Deterministic: given same plaintext and key, always

produces the same ciphertext

• Small numbers: if m^e < n, then log is easy to compute
• Big numbers: if m > n, can't compute do math mod n

• Side channel attacks: interfaces can leak information
about secret key

• Key Management: no secure place to store the secret key

• Quantum Computers: provably breakable with different
hardware

Solution 2: Hybrid encryption
• Assume:

• Symmetric encryption scheme (Gen_SE, Enc_SE, Dec_SE)
• Public-key encryption scheme (Gen_PKE, Enc_PKE, Dec_PKE)

• Use public-key encryption to establish a shared session key
• Avoids quadratic problem, assuming existence of phonebook
• Avoids problem of key distribution

• Use symmetric encryption to exchange long plaintext
encrypted under session key
• Gain efficiency of block cipher and mode

Protocol to exchange encrypted message

0. B: (pk_B, sk_B) = Gen_PKE(len_PKE)
publish (B, pk_B)

1. A: k_s = Gen_SE(len_SE)
c1 = Enc_PKE(k_s; pk_B)
c2 = Enc_SE(m; k_s)

2. A -> B: c1, c2
3. B: k_s = Dec_PKE(c1; sk_B)

m = Dec_SE(c2; k_s)

m

Session keys
• If key compromised, only those messages encrypted

under it are disclosed
• Used for a brief period then discarded

• cryptoperiod: length of time for which key is valid
• in this case, for a single (long) message
• not intended for reuse in future messages

• only intended for unidirectional usage:
• A->B, not B->A

Problems with Textbook RSA
• Deterministic: given same plaintext and key, always

produces the same ciphertext

• Small numbers: if m^e < n, then log is easy to compute
• Big numbers: if m > n, can't compute do math mod n

• Side channel attacks: interfaces can leak information
about secret key

• Key Management: no secure place to store the secret key

• Quantum Computers: provably breakable with different
hardware

Square-and-Multiply
int modular_exp(x, n, p){

res = 1;
while (n > 0) {

if (n % 2 == 1){
res = res * x % p;

}
x = x^2 % p;
n >> 1;

}
return res;

}

Exercise 3: Square-and Multiply
• Compute 3D mod 21 using square and multiply

res = 1 x = 3 n = 5

res = 3 x = 9 n = 2

res = 12 x = 9 n = 0

res = 3 x = 18 n = 1

int modular_exp(x, n, p){
res = 1;
while (n > 0) {

if (n % 2 == 1){
res = res * x % p;

}
x = x^2 % p;
n >> 1;

}
return res;

}

Side Channels

• Power
• Timing
• EM Radiation
• Acoustics

Solution 3: Blinded RSA
[Rivest, Shamir, Adleman 1977]
Shared Turing Award in 2002: ingenious
contribution to making public-key crypto

• Gen(len):
• Pick primes 𝑝, 𝑞
• Choose 𝑒, 𝑑 such that 𝑒𝑑 = 1 mod lcm(𝑝 − 1, 𝑞 − 1)
• 𝑝𝑘 = 𝑛, 𝑒 , 𝑠𝑘 = (𝑝, 𝑞, 𝑑)

• Enc(m, pk)

• Dec(c, sk):
𝑐 = 𝑚4 mod 𝑛

𝑚 = ((𝑐𝑟)5 mod 𝑛) ⋅ 𝑟;5

Problems with Textbook RSA
• Deterministic: given same plaintext and key, always

produces the same ciphertext

• Small numbers: if m^e < n, then log is easy to compute
• Big numbers: if m > n, can't compute do math mod n

• Side channel attacks: interfaces can leak information
about secret key

• Key Management: no secure place to store the secret key

• Quantum Computers: provably breakable with different
hardware

Solution 4: Key Management
• Store keys offline
• Store keys in protected files
• Memorize the keys (sort of)

Password-Based Encryption
• PBKDF2: Password-based key derivation function [RFC

8018]
• Output: derived key k
• Input:

• Password p
• Salt s
• Iteration count c
• Key length len
• Pseudorandom function (PRF): "looks random" to an adversary

that doesn't know an input called the seed (commony instantiated
with an HMAC)

https://tools.ietf.org/html/rfc8018

PBKDF2
Algorithm:
• F(p, s, i, c) = U(1) XOR ... XOR U(c)

• U(1) = PRF(s, i; p)
• U(j) = PRF(U(j-1); p)
• F is in essence a salted iterated hash...

• k = F(p, s, 1, c) || F(p, s, 2, c) || ... || F(p, s, n, c)
• enough copies to reach keylen
• || denotes bit concatenation

Problems with Textbook RSA
• Deterministic: given same plaintext and key, always

produces the same ciphertext

• Small numbers: if m^e < n, then log is easy to compute
• Big numbers: if m > n, can't compute do math mod n

• Side channel attacks: interfaces can leak information
about secret key

• Key Management: no secure place to store the secret key

• Quantum Computers: provably breakable with different
hardware

Solution 5: Post-Quantum Cryptography

Exercise 4: Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. How much time did you spend on this video lecture (including
time spent on exercises)?

3. Do you have particular questions you would like me to
address in this week's problem session?

4. Would you prefer to keep using this asynchronous/flipped
classroom approach or would you prefer to switch to
synchronous teaching?

5. Do you have any other comments or feedback?

28

