Lecture 5: Privacy

CS 181S

Fall 2020

1

Confidentiality Integrity Availability

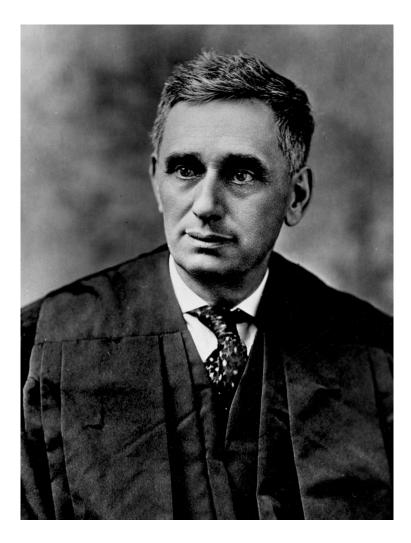
What is Privacy?

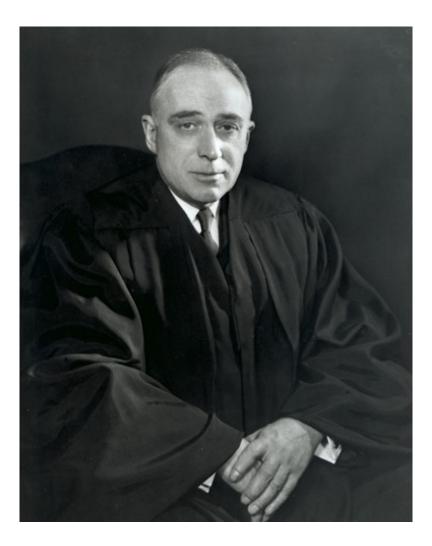
What is Privacy?

Cambridge Analytica

4

Privacy


Privacy concerns information about individuals (people, organizations, etc.)


- Often construed as legal right
- Privacy is not a synonym for confidentiality or for secrecy

Exercise 1: What is a privacy violation?

- 1. Police read papers stored in your home
- 2. Police read papers you threw in the trash
- 3. Police read your medical records
- 4. Your parents read your medical records
- 5. Pomona uses your medical records in a research study
- 6. Police read your social media posts
- 7. Police read your emails
- 8. Google employee reads your emails
- 9. Google uses your emails to target personalized ads
- 10. Someone tracks your location for months (using phone)

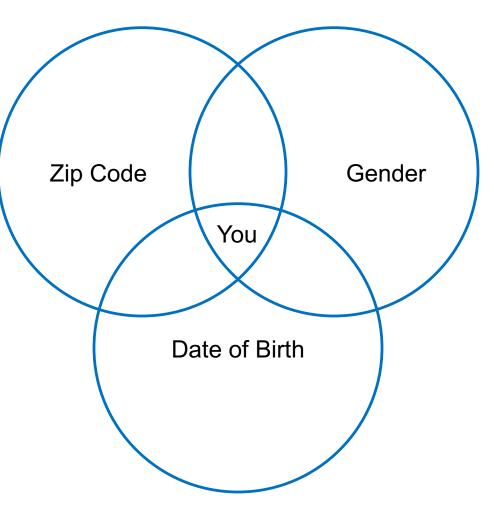
Privacy in American Law

Contextual Integrity

- defines privacy relative to appropriate context
- considers information type, time, location, purpose, principals involved (subject, sender, receiver)
- dependent on social norms
- norms can change over time

General Guidelines

The FTC's Fair Information Practice Principals (FIPPs) are the most broadly recognized guidelines for handling private data in information systems


- Seek consent
- Minimize data use
- Limit storage
- Avoid linking

HIPAA

- Health information that does not identify an individual and with respect to which there is no reasonable basis to believe that the information can be used to identify an individual is not individually identifiable health information.
- A covered entity may determine that health information is not individually identifiable health information only if:
 - (1) An expert determines that the risk is very small that the information could be used, alone or in combination with other reasonably available information, by an anticipated recipient to identify an individual who is a subject of the information; or
 - (2) It removes names, geographic subdivisions smaller than a state, all elements of dates (except year), telephone and fax numbers, email addresses, SSNs, UIDs, URLs, IP addresses, biometric identifiers, full face photos,

Deanonymization

Deanonymization

k-Anonymity

Name	Pronouns	Year	Grade		
Alice	she/her	2020	95		
Bob	he/him	2020	80		
Charlie	they/them	2020	95		
David	he/him	2020	60		
Edward	he/him	2021	80		
Flora	she/her	2021	99		
Georgia	she/her	2021	60		

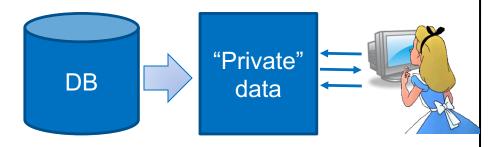
- Quasi-identifiers (QIs) are sets of attributes that can be exploited for linking
- A database is k-anonymous if each QI maps to at least k different individuals
- Techniques: suppression and generalization

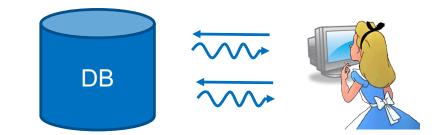
Exercise 2: k-anonymity

 Modify this dataset to make it 2-anonymous with respect to Race/DOB/Sex

Race	DOB	Sex	Marital Status	Health Issues
asian	9/27/00	female	divorced	hypertension
asian	9/30/00	female	divorced	obesity
asian	4/18/00	male	married	chest pain
asian	4/15/00	male	married	obesity
black	3/13/99	male	married	hypertension
black	3/18/99	male	married	shortness of breath
black	9/13/00	female	married	shortness of breath
black	9/07/00	female	married	obesity
white	5/14/01	male	single	chest pain
white	4/08/01	male	single	obesity
white	9/15/01	female	married	shortness of breath

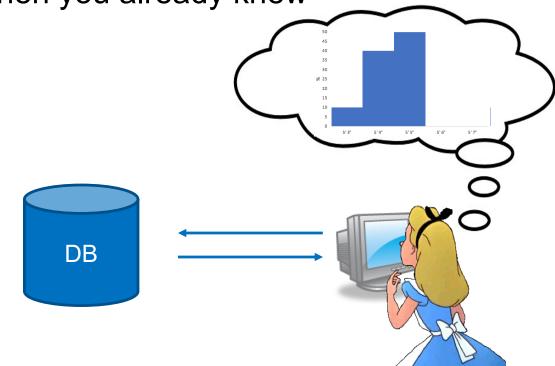
Exercise 2: k-anonymity

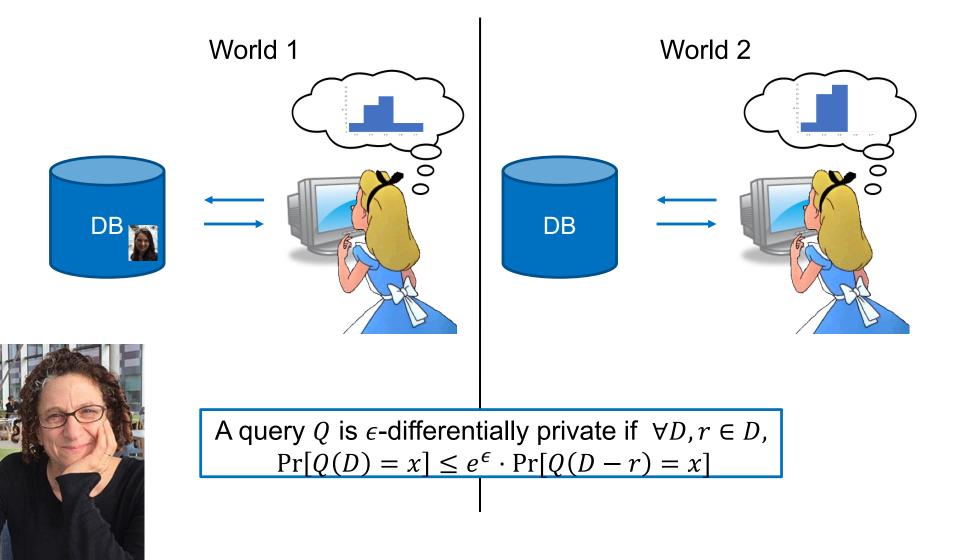

 Modify this dataset to make it 2-anonymous with respect to Race/DOB/Sex


Race	DOB	Sex	Marital Status	Health Issues		
asian	9/00	female	divorced	hypertension		
asian	9/00	female	divorced	obesity		
asian	4/00	male	married	chest pain		
asian	4/00	male	married	obesity		
black	3/99	male	married	hypertension		
black	3/99	male	married	shortness of breath		
black	9/00	female	married	shortness of breath		
black	9/00	female	married	obesity		
white	2001	*	single	chest pain		
white	2001	*	single	obesity		
white	2001	*	married	shortness of breath		

Database Privacy

Offline Privacy


Online Privacy



Defining Privacy: Try #1

 You don't know anything more after interacting with the database then you already knew

Differential Privacy

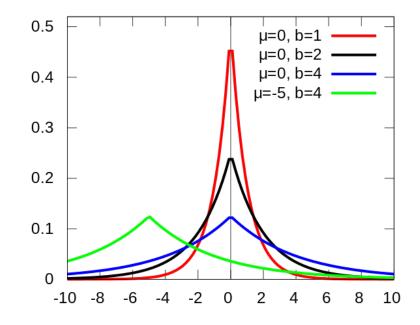
Sensitivity

- The sensitivity ∆ of a query Q is the maximum the answer to Q can possibly change between two databases that differ only by one person
- Q = number of people taller than 6 ft $\Delta = 1$
- Q = maximum height of a person

 $\Delta = 48$

Exercise 3: Sensitivity

- Assume you have a database containing the heights of 100 users specified in inches. You may assume that all heights are between 48 in and 96in.
- What is the sensitivity of the following queries?
 - 1. The number of people who are 5' 4"
 - 2. The median height in the dataset
 - 3. The mean height in the dataset

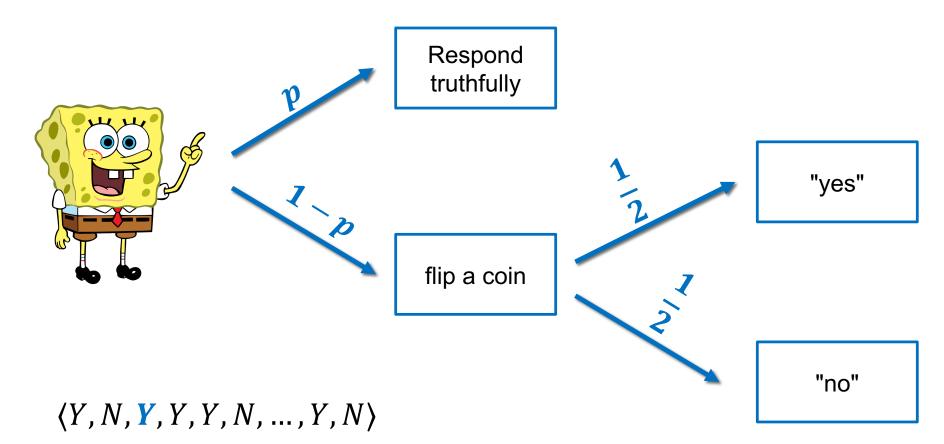

Exercise 3: Sensitivity

- Assume you have a database containing the heights of 100 users specified in inches. You may assume that all heights are between 48 in and 96in.
- What is the sensitivity of the following queries?
 - 1. The number of people who are 5' 4" $\Delta = 1$
 - 2. The median height in the dataset $\Delta = 48$
 - 3. The mean height in the dataset
- $\Delta = .48$

Laplacian Distribution

 Lap(b) is the probability distribution with the property that

$$\Pr[Lap(b) = x] = \frac{1}{2b} \cdot e^{-\frac{|x|}{b}}$$


Laplacian Mechanism

• Given a query Q on a database D that has sensitivity Δ , respond with Q(D)+Y where Y is drawn from the distribution $Lap(\frac{\Delta}{\epsilon})$

• Theorem: this mechanism satisfies ϵ -differential privacy

$$\frac{\Pr[Q(D) + Y = x]}{\Pr[Q(D-r) + Y = x]} = \frac{\Pr[Y = x - Q(D)]}{\Pr[Y = x - Q(D-r)]} = \frac{\frac{1}{2(\Delta/\epsilon)} \cdot e^{-\frac{|x - Q(D)|}{\Delta/\epsilon}}}{\frac{1}{2(\Delta/\epsilon)} \cdot e^{-\frac{|x - Q(D-r)|}{\Delta/\epsilon}}} = \frac{e^{-\frac{|x - Q(D)|}{\Delta/\epsilon}}}{e^{-\frac{|x - Q(D-r)|}{\Delta/\epsilon}}}$$
$$= e^{\frac{|x - Q(D-r)|}{\Delta/\epsilon} - \frac{|x - Q(D)|}{\Delta/\epsilon}} = e^{\frac{\epsilon}{\Delta} \cdot (|x - Q(D-r)| - |x - Q(D)|)}$$
$$\leq e^{\frac{\epsilon}{\Delta} \cdot (|x - Q(D-r) - x + Q(D)|)} = e^{\frac{\epsilon}{\Delta} \cdot (|Q(D) - Q(D-r)|)}$$

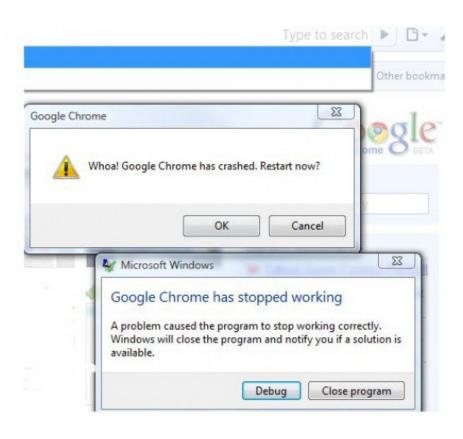
Randomized Response

Theorem: this mechanism satisfies ϵ -differential privacy

Randomized Response

• Theorem: this mechanism satisfies ϵ -differential privacy

 $\frac{\Pr[\langle Y, N, \mathbf{Y}, Y, Y, N, \dots, Y, N \rangle \mid f(Bob) = Y]}{\Pr[\langle Y, N, \mathbf{Y}, Y, Y, N, \dots, Y, N \rangle \mid f(Bob) = N]}$

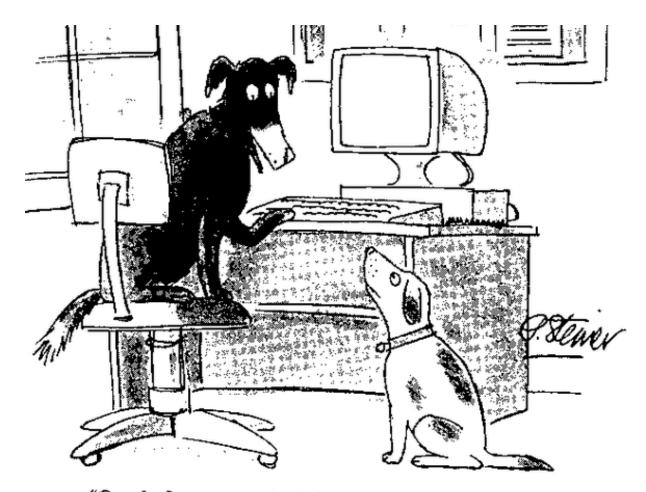

$$= \frac{\Pr[Y \mid f(P_0)] \cdot \Pr[N \mid f(P_1)] \cdot \Pr[Y \mid f(Bob) = Y] \cdot ... \cdot \Pr[N \mid f(P_{n-1})]}{\Pr[Y \mid f(P_0)] \cdot \Pr[N \mid f(P_1)] \cdot \Pr[Y \mid f(Bob) = N] \cdot ... \cdot \Pr[N \mid f(P_{n-1})]}$$

$$= \frac{\Pr[Y \mid f(Bob) = Y]}{\Pr[Y \mid f(Bob) = N]}$$

$$= \frac{p \cdot 1 + (1 - p) \cdot \frac{1}{2}}{p \cdot 0 + (1 - p) \cdot \frac{1}{2}} = \frac{(1 + p) \cdot \frac{1}{2}}{(1 - p) \cdot \frac{1}{2}} = \frac{(1 + p)}{(1 - p)}$$

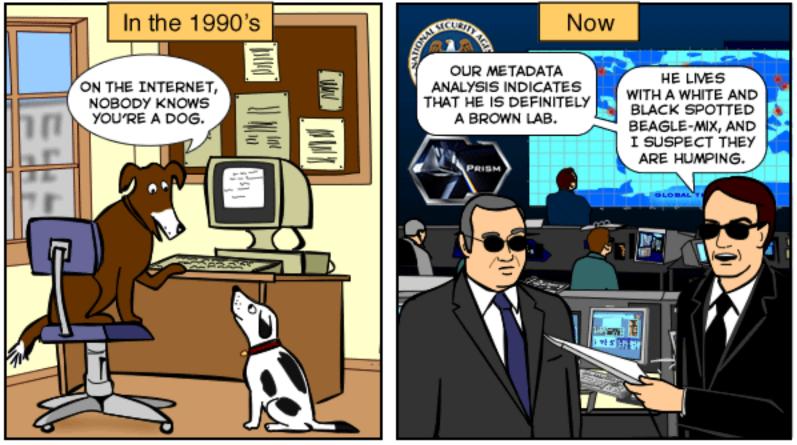
$$= e^{\ln(\frac{1 + p}{1 - p})}$$

DP in action...



Linked in

Internet Privacy



"On the Internet, nobody knows you're a dog."

Internet Privacy

The Joy of Tech TM

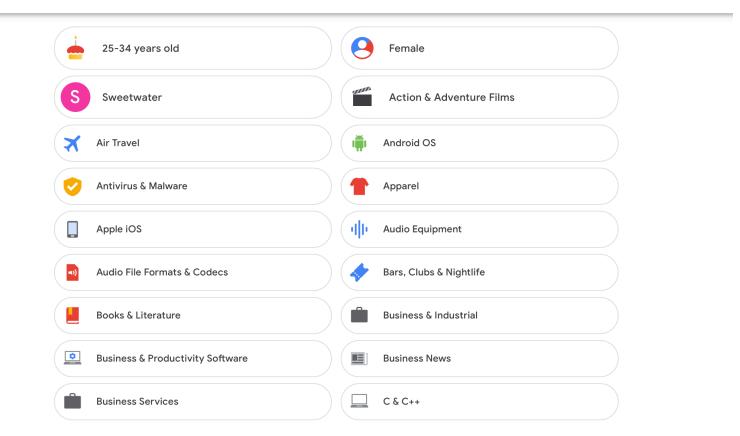
by Nitrozac & Snaggy

© 2013 Geek Culture

joyoftech.com

Browser Tracking

World U.S. Politics N.Y. Business Opinion Tech Science Health Sports Arts Style Food Travel Magazine T Magazine Real Estate ALL


When you buy any bag of dog or cat food, we give a meal to a pet in need.

×	\bigcirc	🗋 396 🛆 14.1 MB 🕔 5.71s 🗦 1 🌗 999+ 🛕 2						¢	+	Q~ Search		
日 Elements	D Network	Resources		J Tir	melines		Deb	ugger	Sto	rage) Conso	le +
All Resources	Documents 🗘										<u></u>	
Name		Domain ^		Met	Sch	Status	Cac	Size	Transfer	Start Time	Latency	Duration
blob:https://www.youtu	be.com/8a5f55e3-99f3	a1.nyt.com		GET	HTTPS	200	Yes	437.57 KB	0 B	311.1ms	19.79ms	149.2ms
is tagx-simple.min.js		a248.e.akamai.net		GET	HTTPS	200	Yes	32.56 KB	0 B	7.60s	24.03ms	0.154ms
sharetools-mixin.js		ad.doubleclick.net		GET	HTTPS	200	No	42 B	559 B	18.93s	62.15ms	0.911ms
sharetools-config.js		ad.doubleclick.net		GET	HTTPS	200	No	42 B	559 B	17.20s	244.0ms	0.839ms
js showall.js		ad.doubleclick.net		GET	HTTPS	200	No	42 B	559 B	5.23s	125.5ms	0.658ms
js sharetools.js		ads.undertone.com		GET	HTTPS	200	No	7 B	129 B	9.68s	1.09s	0.249ms
css fonts.css		ag.innovid.com		GET	HTTPS	200	No	43 B	288 B	9.69s	996.8ms	1.076ms
js ad-view-manager.js		analytics.twitter.com		GET	HTTPS	200	No	-	604 B	7.17s	1.14s	0.425ms
js 1.6.0.js		beacon.krxd.net		GET	HTTPS	204	No	_	491 B	9.62s	2.13s	5.757ms
Filter Resource List		>									Ma	ain Frame 🗘

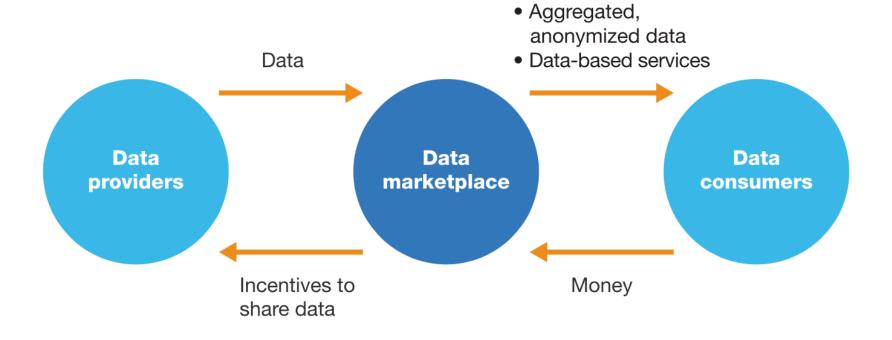
The result...

\equiv **Google** Ad Settings

Exercise 4: Ad Settings

- If you have a google account, check your ad settings. If personalized ads are enabled, take a look at the categories associated with you: https://adssettings.google.com/
- How accure are these categories? Are there any that bother you?

Personalized Content



Targeted Advertising

© marketoonist.com

Data Marketplace

New Legal Regulations

- General Data Protection Regulation (GDPR), 2018
- California Consumer Privacy Act (CCPA), 2020
- Chile Privacy Bill Initiative, 2018
- New Zealand Privacy Bill, 2019
- Brazilian General Protection Law, 2020
- India Personal Data Protection Bill, 2020

Exercise 5: Feedback

- 1. Rate how well you think this recorded lecture worked
 - 1. Better than an in-person class
 - 2. About as well as an in-person class
 - 3. Less well than an in-person class, but you still learned something
 - 4. Total waste of time, you didn't learn anything
- 2. How much time did you spend on this video lecture (including time spent on exercises)?
- 3. Do you have any comments or feedback?

Data Privacy...

"Remember when, on the Internet, nobody knew who you were?"