
CS 181S November 12, 2018

Lecture 21: Dynamic Information Flow Control



Information flow policies

Doc

Can flow to:
Alice

Doc’ Doc’’

computation

Automatic 
deduction 
of policies!

Can flow to:
Alice

Can flow to:
Alice

2



Labels represent policies

Conf, {}

Secret, {}

Secret, {nuc, crypto}

Secret, {nuc} Secret, {crypto}Conf, {nuc,crypto}

Conf, {nuc} Conf, {crypto}



Noninterference 
[Goguen and Meseguer 1982]

An interpretation of noninterference for a program:
• Changes on H inputs should not cause changes on L outputs.

4

H
L

H
L

Program
Inputs Outputs



Static type system

G , !"# ⊢ x:=e

G ⊢ e : ℓ ℓ ⊔ !"# ⊑ G(x)

G , !"# ⊢ if e then c1 else c2

G ⊢ e : ℓ G , ℓ ⊔ !"# ⊢ c1 G , ℓ ⊔ !"# ⊢ c2

G , !"# ⊢ while e do c
G ⊢ e : ℓ G , ℓ ⊔ !"#⊢ c

G , !"# ⊢ c1;c2

G , !"# ⊢ c1 G , !"# ⊢ c2

5

Assignment-Rule:

If-Rule:

While-Rule:

Sequence-Rule:



Soundness of type system

G,!"# ⊢ c ⇒ c satisfies NI

6



Limitations of the type system

7



This type system does not prevent leaks 
through covert channels.
Example of covert channel: 
while s != 0 do { //nothing }; 
p:=1

where s is a secret variable (i.e., Γ(s)=Η ) and p is a public 
variable (i.e., Γ(p)=L ).

8



A solution
• To prevent covert channels due to infinite loops, strengthen 

the typing rule for while-statement, to allow only low guard 
expression:

• Now, type correctness implies termination sensitive NI.
• But, the enforcement mechanism becomes overly 

conservative.
• Another solution? Research!

9

G , !"#⊢ while e do c
G ⊢ e :⊥ G , !"#⊢ c



This type system is not complete.

• c satisfies noninterference  ⇏ G , "#$ ⊢ c 
• There is a command c, such that noninterference is satisfied, but c

is not type correct.
• Example 1:

• Γ x = H, Γ y = L
• c is if x>0 then y:=1 else y:=1
• c satisfies noninterference, because x does not leak to y.
• c is not type correct, because Γ(x) ⋢ Γ(y).

10



This type system is not complete.
• Example 2:

• Γ x = H, Γ y = L
• c is if 1=1 then y:=1 else y:=x
• c satisfies noninterference, because x does not leak to y.
• c is not type correct, because Γ(x) ⋢ Γ(y).

• So, this type system is conservative. It has false negatives:
• There are programs that are not type correct, but that satisfy 

noninterference.

11



Can we build a complete mechanism?
• Is there an enforcement mechanism for information flow 

control that has no false negatives?
• A mechanism that rejects only programs that do not satisfy 

noninterference?

• No! [Sabelfeld and Myers, 2003]
• “The general problem of confidentiality for programs is undecidable.”
• The halting problem can be reduced to the information flow control 

problem.
• Example: 

c; l:= h
• If we could precisely decide whether this program is secure, we could 

decide whether c terminates!

12



Can we build a mechanism with fewer 
false positives?

Switch from static to dynamic mechanisms!

13



DYNAMIC ENFORCEMENT



Dynamic Enforcement
• Dynamic mechanisms use run time information to decrease 

false negatives.
• A dynamic mechanism (monitor) checks/deduces labels 

along the execution:
• When an assignment x:=e is executed,

• either check whether Γ e ⊔ #$% ⊑ Γ(x) holds (fixed Γ),
• The execution of a program is halted when a check fails.

• or deduce Γ(x) such that Γ e ⊔ #$% ⊑ Γ(x) holds (flow-sensitive Γ).
• Monitor maintains a context label #$%. When execution enters a conditional 

command, the mechanism augments #$% with the label of the guard.

15



Dynamic Enforcement
• Example 2:

• Γ x = H, Γ y = L
• c is if 1=1 then y:=1 else y:=x
• c satisfies noninterference, because x does not leak to y.
• dynamic check Γ 1 ⊔ Γ(1=1) ⊑ Γ(y) always succeeds, because branch 
y:=x is never taken.

• Remember: the static type system rejects this program before execution, 
even though the program is secure!

16



But, there is a caveat…
• A dynamic mechanism may leak information

• when deciding to halt an execution due to a failed check (fixed Γ), or
• when deducing labels during execution (flow-sensitive Γ).

17



Leaking through halting (fixed Γ)
• Consider fixed Γ: Γ(h)=H and Γ(l)=L.
• Consider program:

l:=0;
if h>0 then l:=1 else h:=1;
l:=2

• If h>0 is true, then execution is halted.
• No public output.        

• If h>0 is false, then execution terminates normally.
• One public output. 

• Problem: h>0 is leaked to public outputs.

18

Ou
tpu

t



But, there is a caveat…
• A dynamic mechanism may leak information

• when deciding to halt an execution due to a failed check (fixed Γ), or
• when deducing labels during execution (flow-sensitive Γ).

19



Output

Leaking through labels (flow-sensitive Γ)
• Initially: Γ x = L, Γ y = L, Γ h = H

x:=0;
if h>0 then x:=1 else skip
y:=x 

• At termination, when h≯0: Γ y = Γ x = L.
• Two public outputs.

• At termination, when h>0: Γ y = Γ x = H.
• No public output.

• Problem: Even though h flows to x, x is tagged with H only 
when h>0. So, h>0 is leaked to public outputs.

20



The Problem with Dynamic Mechanisms
• Purely dynamic mechanisms are usually unsound.
• Purely dynamic mechanism with additional restrictions can 

become sound:
• Restriction: Stop execution whenever the guard expression of a 

conditional command is high.
• But, the resulting mechanism is more conservative than desired.

• Alternatively…

21



Use on-the-fly static analysis
• Use on-the-fly static analysis to update the labels of target 

variables in untaken branch.
• The resulting mechanism is sound and less conservative.

22



Use on-the-fly static analysis

x:=0;
if h>0 then x:=1 else skip

23

h>0 is 
evaluated 
to false.

Problem: x was tagged with H only when h>0 was 
true, even though h always flow to x.
Goal: x should be tagged with H at every execution.

Execute 
taken 
branch.



Use on-the-fly static analysis

x:=0;
if h>0 then x:=1 else skip

24

Problem: x was tagged with H only when h>0 was 
true, even though h always flow to x.
Goal: x should be tagged with H at every execution.

Apply on-the-fly 
static analysis 
to the untaken 
branch.

Οn-the-fly static analysis:
Γ x = Γ 1 ⊔ Γ h>0 = Η



Use on-the-fly static analysis

x:=0;
if h>0 then x:=1 else skip

25

Problem: x was tagged with H only when h>0 was 
true, even though h always flow to x.
Goal: x should be tagged with H at every execution.

Γ x = Η



Exercise
• Consider a dynamic mechanism with on-the-fly static 

analysis and flow sensitive Γ. 
• Assume Γ is initialized as: Γ x = H, Γ y = L, Γ z = H, 

and consider the following program: 
x≔ (;
y ≔ *;
+, z > . /012 y ≔ ( 1341 x≔ *

• What are the confidentiality labels that tag variables when 
the program terminates? 



Static versus Dynamic
• Static:

• Low run time overhead.
• No new covert channels.
• More conservative.

• Dynamic
• Increased run time overhead.
• Possible new covert channels.
• Less conservative.

• Ongoing research for both static and dynamic.
• Different expressiveness of policies, different NI versions, different 

mechanisms.

27



INFORMATION FLOW CONTROL 
IN PRACTICE(ISH)



Past and current research on dynamic 
analysis
• RIFLE (ISA) [Vachharajani et al. 2004]
• HiStar (OS) [Zeldovich et al. 2006]
• Trishul (JVM) [Nair et al. 2008]
• TaintDroid (Android) [Enck et al. 2010]
• LIO (Haskell) [Stefan et al. 2011]
• ...

29



TaintDroid
• Smartphones run apps 

developed by (potentially 
untrusted) third parties

• Apps can access sensitive 
information (location, 
contacts, etc.)

• In Android, users grant 
apps particular 
permissions on download

• End-user license 
agreement (EULA) states 
how information will be 
used

• How can you tell whether 
app behavior follows its 
permissions?



TaintDroid Labels

Public

Sensitive, {camera}

⊤

Sensitive, {GPS,camera} Sens, {camera, contacts}Sensitive, {GPS, contacts}

Sensitive, {GPS} Sensitive, {contacts}



Android Background Info
• Linux-based, open source, 

mobile-phone platform
• Middleware written in Java 

and C/C++.
• Functionality implemented  

by (3rd party) applications.
• Apps run on top of 

middleware. 

• Applications written in 
Java.

• Compiled into Dalvik
Executable(DEX) byte-
code format.
• custom byte-code
• Register-based as opposed to 

stack-based.
• Executes within Dalvik VM 

interpreter instance.
• Runs isolated on the platform.
• Has unique UNIX user ids.
• Communicate via binder IPC 

mechanism.



TaintTracking
• Instrument VM 
interpreter to provide 
variable-level taint 
tracking

• Use message-level 
tracking between apps

• Use method-level 
tracking in native 
libraries

• Use file-level tracking 
for persistent data



Limitations
• Dynamic IFC mechanisms incur run-time overhead 

• 14% for CPU bound microbenchmark
• Negligible for interactive applications

• Doesn't capture implicit flows



Experimental Findings
• Researchers studied real-world apps with TaintDroid
• Of 30 apps, found:



Flume
• Extends linux with process-level information flow control
• User-level implementation
• No new OS, can use existing communication abstractions



Flume Labels
• Lattice of labels

• Label summarizes which categories of data a process is assumed 
to have seen. 

• Examples:
• { “Financial Reports” }
• { “HR Documents” }
• { “Financial Reports” and “HR Documents” }

• Processes have an integrity label and a confidentiality 
label
• Processes can upgrade their labels
• Processes can create new tags, can declassify tags they created
• Inter-process communication mediated by Flume to enforce IFC

“tag”

“label”



Information Flow Control in Flume
• Linux processes communicate via a variety of channels: 

sockets, pipes, shared memory
• Endpoint abstraction: process can specify which privileges 

can be used when communicating through each endpoint



Information Flow Control in Flume
• Linux processes communicate via a variety of channels: 

sockets, pipes, shared memory
• Endpoint abstraction: process can specify which privileges 

can be used when communicating through each endpoint
• Flume mediates all communications between endpoints 

(system call delegation)
Web App

glibc

Linux Kernel
Secret 
Data

Flume Libc

Flume 
RM



Information Flow Control in Flume
• Linux processes communicate via a variety of channels: 

sockets, pipes, shared memory
• Endpoint abstraction: process can specify which privileges 

can be used when communicating through each endpoint
• Flume mediates all communications between endpoints 

(system call delegation)

• Flume enforces IFC

Web App
glibc

Linux Kernel
Secret 
Data

Flume Libc

Flume 
RM

f
Sf = { HR }Se = { HR }

Process 
q

Process 
p

Sp = {}
Dp = { HR } e Sq = { HR }



Limitations

• Dynamic IFC mechanisms incur run-time overhead

• 30-40% reduction in throughput for file I/O

• Increased latency

• Large trusted computing base

• Coarse granularity 

• Alternative solutions: 

• Dedicated OS (e.g., Asbestos, HiStar)

• PL-level techniques (e.g., DLM, TaintDroid) 


