
CS 181S November 12, 2018

Lecture 17: Information Flow

Where we were…

• Authentication: mechanisms that bind principals
to actions

• Authorization: mechanisms that govern whether
actions are permitted

• Audit: mechanisms that record and review actions

Access Control Policy
• An access control policy specifies which of the

operations associated with any given object each
subject is authorized to perform

• Expressed as a relation !"#ℎ:

%&'(Objects
dac.tex dac.pptx

subject
ebirrell r,w r,w
clarkson r r
student r

Who defines Policies?
• Discretionary access control (DAC)

• Philosophy: users have the discretion to specify policy

themselves

• Commonly, information belongs to the owner of object

• Access control lists, privilege lists, capabilities

• Mandatory access control (MAC)

• Philosophy: central authority mandates policy

• Information belongs to the authority, not to the individual users

• MLS and BLP, Chinese wall, Clark-Wilson, etc.

Access control for computed data

Doc

Can read:
Alice
Bob

Doc’ Doc’’

computation

Can read:
Alice
Bob

Can read:
Alice
Bob

5

Scaling to many pieces of data…

6

Scaling to many users…

7

Scaling to many interactions…

8

? ?

?

? ?

Need to assign
restrictions in an
automatic way.

Information flow policies

Doc

Can flow to:
Alice

Doc’ Doc’’

computation

Automatic
deduction
of policies!

Can flow to:
Alice

Can flow to:
Alice

9

Information Flows between Principals
• Channel: means to communicate information
• Storage channel: written by one program and read by

another
• Legitimate channel: intended for communication between

programs
• Covert channel: not intended for information transfer yet

exploitable for that purpose

Information Flow (IF) Policies
• Focus on information not objects
• An IF policy specifies restrictions on the associated data,

and on all its derived data.
• IF policy for confidentiality:

• Value ! and all its derived values are allowed to be read only by
Alice

11

Different from the access control policy:
Value ! is allowed to be read at most by Alice.

• The enforcement mechanism automatically deduces the
restrictions for derived data.

Policy Granularity
• Objects can be system principles (files, programs, sockets…)
• Objects can be program variables

12

Scaling to many interactions…

13

Scaling to many interactions…

14

Labels represent policies

Conf, {}

Secret, {}

Secret, {nuc, crypto}

Secret, {nuc} Secret, {crypto}Conf, {nuc,crypto}

Conf, {nuc} Conf, {crypto}

Labels represent policies

Low

High

Labels represent policies

17

Doc
H

Doc’ Doc’’
HH

Noninterference
[Goguen and Meseguer 1982]

An interpretation of noninterference for a program:
• Changes on H inputs should not cause changes on L outputs.

18

H
L

H
L

Program
Inputs Outputs

Noninterference: Example

19

H
L

H
L

H
L

H
L

1

2

3

3

3

2

5

3

ℎ ℎ# ≔ ℎ + $;
$# ≔ $ + 1$

ℎ′

$′

ℎ ℎ# ≔ ℎ + $;
$# ≔ $ + 1$

ℎ′

$′

The program satisfies noninterference!

Noninterference: Example

20

H
L

H
L

H
L

H
L

1

2

3

6

ℎ

"′
"′ ≔ ℎ ∗ 2

ℎ

"′
"′ ≔ ℎ ∗ 2

The program does not satisfy noninterference!

2

2

Noninterference: Example

21

H
L

H
L

H
L

H
L

1

1

3

0

ℎ

"′

if(ℎ == 1){
'′ ≔ 1

} else {
'′ ≔ 0

}

ℎ

"′

The program does not satisfy noninterference!

2

2

if(ℎ == 1){
'′ ≔ 1

} else {
'′ ≔ 0

}

Noninterference
• Consider a program !.
• Consider two memories "! and "", such that

• they agree on values of variables tagged with L:
• "# =% "&.

22

"# and "& might not agree on values of
variables tagged with H.

• !(")) are the observations produced by executing ! to
termination on initial memory "):
• final outputs, or
• intermediate and final outputs.

• Then, observations tagged with L should be the same:
• $ %# =% $ %& .

Noninterference

∀"#, "$: if "# =& "$, then ("# =& ("$.

23

For a program (and a mapping from variables to labels in
L, H :

Examples
• P outputs ("#, %#) where "# = "(||%(and %# = %(

• || denotes string concatenation.

• P outputs %# where %* = + %(if "(is even
%(||%(if "(is odd

Examples
• P := while !" > 5 do skip; %& ≔ 4

• P outputs %& = !" ⊕ + where + is a freshly generated,
uniformly random number 32-bit binary string
• Assume !" is always a 32-bit binary string.

• P outputs %& = Enc !"; %"
• Assume "" is an RSA public key

Less restrictive than necessary…

26

H
L

H
L

H
L

H
L

2

4

9

ℎ

"′

while ℎ > 5 do
skip;

"# ≔ 4

while ℎ > 5 do
skip;

"# ≔ 4

ℎ

"′

2

2

Termination sensitive noninterference
• If
• !! =" !#,

• then
• # terminates on $$ iff # terminates on $%, and
• % !! =" % !# .

27

Probabilistic Randomness
• Probabilistic Noninterference: For a program ! and a mapping

from variables to labels in L, H , the output distribution H% =
!((), *)) is independent of ()

• Computational Probabilistic Noninterference

Computational Probabilistic Noninterference

29

x	:=	Enc(v;	k)
Wanted to

be L!

Required to be H.

H HH

Examples
• P takes a list of ballots is !" and returns #$, the results of

the election (which candidate receives a plurality of the
vote)

• P takes a list of students at Pomona #",& and a list of dorm
rooms #",' and returns a #$, a list of room assignments

More restrictive than necessary…

31

x	:=	maj(v1,	v2,	…,	vn)H

Wanted to
be L!

Required to be H.

HHH

Less restrictive than necessary…

32

m :=	Match(students;	rooms)
Wanted to

be H!

Required
to be L.

L LL

Declassification
• What: specify what information may be declassified

• e.g., LastFourDigits(credit card number) should be low

• Partial Equivalence Relation (PER) Model, Reactive NI

• Who: specify who may declassify information
• e.g., high object owner can write to low objects

• Decentralized Label Model, robust declassification

• Where: specify which pieces of code may declassify
• e.g., encryption function can write to low objects

• Intransitive Noninterference, Constrained Noninterference

• When: specify when information may be declassified
• e.g., software key may be shared after payment has been received
• Temporal, Relative, Probabilistic

Enforcement Mechanisms
• Static Information Flow Control:

• type checking

• Dynamic Information Flow Control:
• taint-tracking
• runtime monitoring

