Lecture 17: Information Flow

CS 181S November 12, 2018

Where we were...

Authentication: mechanisms that bind principals e
to actions
'

Authorization: mechanisms that govern whether j;u’/
actions are permitted | @

Audit: mechanisms that record and review actions %
—

Access Control Policy

An access control policy specifies which of the

operations associated with any given object each
subject is authorized to perform

Expressed as a relation Auth:

w rw

ebirrell r,
subject clarkson r r

student r

Who defines Policies?

Discretionary access control (DAC)

Name Privilege
oooooooooo) ¢ Read & Write

Philosophy: users have the discretion to spec = iy
themselves
Commonly, information belongs to the owner of obj

Access control lists, privilege lists, capabilities
Mandatory access control (MAC)
Philosophy: central authority mandates policy
Information belongs to the authority, not to the indiv
MLS and BLP, Chinese wall, Clark-Wilson, etc. :

Access control for computed data

Doc

ZAN
computation
H Ny

/ \

Can read: Can read:
Alice Alice
Bob Doc’ Doc” Bob

Scaling to many pieces of data...

Scaling to many users...

.
€
€

Scaling to many interactions...

Information flow policies

Can flow to:

Alice
Doc

Automatlc
- deduction

@‘@' -@-@\ of policies!

Can flow to:

Can flow to:

Alice Alice

Doc”

Information Flows between Principals

Channel: means to communicate information

Storage channel: written by one program and read by
another

Legitimate channel: intended for communication between
programs

Covert channel: not intended for information transfer yet
exploitable for that purpose

Information Flow (IF) Policies

Focus on information not objects

An IF policy specifies restrictions on the associated data,
and on all its derived data.
IF policy for confidentiality:

Value v and all its derived values are allowed to be read only by
Alice

Different from the access control policy:
Value v is allowed to be read at most by Alice.

The enforcement mechanism automatically deduces the
restrictions for derived data.

Policy Granularity

Objects can be system principles (files, programs, sockets...)
Objects can be program variables

Scaling to many interactions...

« ..
«
€

Scaling to many interactions...

« ..
«
€

-

" g

Labels represent policies

Secret, {nuc, crypto}

Conf, {nuc} Secret, {} Conf, {crypto}

Labels represent policies

?

Low

Labels represent policies

Doc ?

ZN
i

/
Doc’ Doc”
y

Noninterference
[Goguen and Meseguer 1982]

An interpretation of noninterference for a program:
Changes on H inputs should not cause changes on L outputs.

H H
L:x L
Inputs Outputs

Program

Noninterference: Example
H

1

2

> h
h' := h+ [
I, ' =1+1
J:l
H
> h
B o=h+;
L ' =1+1

JH 3
pl 3,
H 5
L 3

The program satisfies noninterference!

Noninterference: Example

1 HJ, H

) _, l':'=h %2 l,L 2:
3 H[, H

2 L TRt L6

The program does not satisfy noninterference!

Noninterference: Example

1 H[, == H
> h I'=1
_ } else {
2 il l’ =0 ll L 1 R
> } >
3 H if(h == 1){ H
» h =1
} else {
2 L: l’ = O ll L O >

}

The program does not satisfy noninterference!

Noninterference

Consider a program C.

Consider two memories M, and M,, such that
they agree on values of variables tagged with L:

M; =y M,.

M; and M, might not agree on values of
variables tagged with H.

C (M;) are the observations produced by executing C to
termination on initial memory M;:
final outputs, or
intermediate and final outputs.
Then, observations tagged with L should be the same:
C(My) =1 C(M).

Noninterference

For a program C and a mapping from variables to labels in
{L,H}:

VMl, Mz: |f Ml —L Mz, then C(Ml) —L C(Mz)

Examples

P outputs (Hp, Lp) where Hy = H;||L; and L, = L;
|| denotes string concatenation.

L; if H; is even

P outputs L, where L, = { L;||L; if H; is odd

Examples

P := while H; > 5 do skip; Ly = 4

P outputs L, = H; @ k where k is a freshly generated,
uniformly random number 32-bit binary string
Assume H; is always a 32-bit binary string.

P outputs Ly, = Enc(H;; L)
Assume L; is an RSA public key

Less restrictive than necessary...

while h > 5 do

skip;

l' :=4

while h > 5 do

skip;

[' == 4

Termination sensitive noninterference

If
M; =1, My,
then

C terminates on M, iff C terminates on M,, and
C(My) =1 C(My).

Probabilistic Randomness

Probabilistic Noninterference: For a program C and a mapping
from variables to labels in {L, H}, the output distribution H; =
C(H;, Lp) is independent of H;

Computational Probabilistic Noninterference

Computational Probabilistic Noninterference

X := Enc(V,

Wanted to
be L!

Examples

P takes a list of ballots is H; and returns L, the results of
the election (which candidate receives a plurality of the
vote)

P takes a list of students at Pomona L; ; and a list of dorm
rooms L;, and returns a Ly, a list of room assignments

More restrictive than necessary...

. — ma](V1, Vz, Vn)

Wanted to
be L!

Less restrictive than necessary...

Required
.
= Match(students; rooms)

L]
m .

Wanted to
be H!

Declassification

What: specify what information may be declassified

e.g., LastFourDigits(credit card number) should be low
Partial Equivalence Relation (PER) Model, Reactive NI

Who: specify who may declassify information
e.g., high object owner can write to low objects
Decentralized Label Model, robust declassification

Where: specify which pieces of code may declassify
e.g., encryption function can write to low objects
Intransitive Noninterference, Constrained Noninterference

When: specify when information may be declassified

e.g., software key may be shared after payment has been received
Temporal, Relative, Probabilistic

Enforcement Mechanisms

Static Information Flow Control:
type checking

Dynamic Information Flow Control:
taint-tracking
runtime monitoring

