
CS 181S November 5, 2018

Lecture 15: Capabilities

Where we were…

• Authentication: mechanisms that bind principals
to actions

• Authorization: mechanisms that govern whether
actions are permitted
• Discretionary Access Control
• Mandatory Access Control

Access Control Policy
• An access control policy specifies which of the

operations associated with any given object each
principal is authorized to perform

• Expressed as a relation !"#ℎ:

%&'(Objects
dac.tex dac.pptx

principals
ebirrell r,w r,w
faculty r r
student r

Access Control Lists

Capability
Lists

Capability Lists
• The capability list for a principal ! is a list

⟨#$, !&'()$⟩, ⟨#+, !&'()+⟩, … , ⟨#-, !&'()-⟩
• e.g., ⟨dac.tex, {r,w}⟩ ⟨dac.pptx, {r,w}⟩

• Capabilities carry privileges.
1) Authorization: Performing operation ./ on object #0 requires a

principal ! to hold a capability 10 = ⟨#0, !&'()0⟩ such that ./ ∈
!&'()0

2) Unforgeability: Capabilities cannot be counterfeited or
corrupted.

• Note: Capabilities are (typically) transferable

Capabilities
• Advantages:

• Natural approach for user-defined objects
• Eliminates confused deputy problems

• Disadvantages:
• Review of permissions?
• Revocation?
• Delegation?
• Privacy?

C-Lists
• OS maintains and stores

stores list of capabilities
!" = ⟨%", '()*+"⟩ for each
principal (process)
1) Authorization: OS mediates

access to objects, checks
process capabilities

2) Unforgeability: capabilities
are stored in protected
memory region (kernel
memory)

Example: File Descriptor Table
• In Unix etc, a file

descriptor is a handle used
to reference files and I/O
resources

• File descriptors have
modes (read, write) and
are stored in per-process
file descriptor table

• File descriptors can be
passed between
processes using
sendmsg()

Example: Google Fuchsia

• new OS in development by
Google

• possibly intended as a
universal across-platform
OS for the IoT era (lots of
speculation)

• capability-based
microkernel embraces
capabilities (handles) for
all kernel objects
• socket, port, virtual

memory region, process,
thread, etc.

Example: OAuth2
• Industry standard

authorization protocol
• Used for single sign-on by

major IDPs
• Facebook, Google

• A bearer token contains a
unique identifier

Cryptographically-protected capabilities
• Object owner creates capabilities using a digital signature

scheme
• Capabilities are triples ! = ⟨$, &'()*, Sig($, &'()*; 01)⟩
• Authorization: P is permitted to perform op on O if P

produces a capability for O with 45 ∈ &'()* and a valid
signature

• Unforgeability: digital signatures are unforgeable to
adversaries who don't know private key 01

• Note: assumes PKI

Restricted Delegation
• !" = $, &'()*", +,, *"

• where *" = Sig $, &'()*", +,; +"
• !, = $, &'()*,, +1, 2", *,

• Where 2" = Sig $, &'()*", +,; +" and *, = Sig $, &'()*,, +1, 2"; +,
• !1 = $, &'()*1, +3, 2", 2,, *1

• Where 2, = Sig $, &'()*,, +1; +, and *1 = Sig $, &'()*1, +3, 2", 2,; +1

• !4 = $, &'()*4, +45,, 2", … , 247,, *4
• Where 29 = Sig $, &'()*9, +95,; +9

*9 = Sig $, &'()*9, +95,, *", … *97,; +9

Revocation
• Revocation Tags

• Capabilities are tuples ! = ⟨$, &'()*, '+,, Sig($, &'()*, '+1; 3)⟩
• Access to object O is guarded by a reference monitor; monitor

maintains a list of revoked tags '+,
• Capability Chains

• Objects can be other capabilities!
• & is authorized to perform 67 on $ if & holds a capability !8 and
67 ∈ &'()*: holds for every capability !: in the chain from !8 to !;

Keys as capabilities
• Encrypt object
• Decryption method functions as reference monitor:

• Authorization: correct key will decrypt object -> allow access
• Unforgeability: incorrect key will not decrypt

• Note: no notion of separate privileges

Example: Mac keychains

• OSX/iOS password
manager

• uses password-based
encryption (AES-256) to
store username/password
credentials

• supports multiple
keychains

Example: CryptDB

• Encrypted database
system. Inspiration for
several application-grade
encrypted database
systems

• Processes database
queries on encrypted data

• Uses chains of keys
(starting with user
password) to decrypt
values/authorize users
• onion encryption

Attribute-based encryption
• Type of public-key encryption in which secret keys

depend on user attributes
• Users can only decrypt a ciphertext if they hold a key for

appropriate attributes
• A KDC creates secret keys for users based on attributes

What about privacy?

