
CS 181S October 24, 2018

Lecture 12: Passwords

Where we were…

• Authentication: mechanisms that bind principals
to actions

• Authorization: mechanisms that govern whether
actions are permitted

• Audit: mechanisms that record and review actions

Where we were…

• Authenticating Humans
• Authenticating Machines
• Authenticating Programs

• Authentication: mechanisms that bind principals
to actions

Where we were…

• Something you are
fingerprint, retinal scan, hand silhouette, a pulse

• Something you know
password, passphrase, PIN, answers to security questions

• Something you have
physical key, ticket, {ATM, prox, credit} card, token

Password lifecycle
1. Create: user chooses password
2. Store: system stores password with user identifier
3. Use: user supplies password to authenticate
4. Change/recover/reset: user wants or needs to

change password

1. PASSWORD CREATION

Who creates?
• User

Weak passwords
Top 10 passwords in 2017:

1. 123456
2. password
3. 12345678
4. qwerty
5. 12345
6. 123456789
7. letmein
8. 1234567
9. football
10. iloveyou

16: starwars, 27: jordan23, 28: harley

Top 20 passwords suffice to compromise 10% of accounts

Who creates?
• User

• System

• Administrator

Strong passwords
• How to characterize strength?
• One Approach: Difficulty to brute force—"strength" or

"security level"
• Recall: if 2^X guesses required, strength is X

• Suppose passwords are L characters long from an
alphabet of N characters
• Then N^L possible passwords
• Solve for X in 2^X = N^L
• Get X = L log2 N
• This X is aka entropy of password

• Assuming every password is equally likely, X is the Shannon entropy of
the probability distribution (cf. Information Theory)

Entropy of passwords
• Option A: 8 character passwords chosen uniformly at

random from 26 character alphabet
• entropy of 8 log2 26 ≈ 37 bits
• but that means abcdefgh equally likely as ifhslgqz

• Option B: 1 word chosen at random from entire
vocabulary
• average high-school graduate: 50k word vocabulary
• entropy of log2 50k ≈ 16 bits

Password Recipes
• Problem: guide users into choosing strong passwords
• Solution: password recipes are rules for composing

passwords
• e.g., must have at least one number and one punctuation symbol

and one upper case letter

Entropy estimation
• Entropy estimates [NIST 2006 based on experiments by

Shannon]:
• (assuming English and use of 94 characters from keyboard)
• 1st character: 4 bits
• next 7 characters: 2 bits per character
• characters 9..20: 1.5 bits per character
• characters 21+: 1 bit per character
• user forced to use lower & upper case and non-alphabetics: flat

bonus of 6 bits
• prohibition of passwords found in a 50k word dictionary: 0 to 6 bits,

depending on password length

Entropy estimation
But:
• "[NIST's] notion of password entropy...does not provide a

valid metric for measuring the security provided by
password creation policies."

• Underlying problem: Shannon entropy not a good
predictor of how quickly attackers can crack passwords

Password Cracking
• Evaluate recipes based on

• percentage of passwords cracked
• number of guesses required to crack

• Example recipes:
1. ≥ 8 characters
2. ≥ 8 characters, no blacklisted words ...with various blacklists
3. ≥ 8 characters, no blacklisted words, one uppercase,

lowercase, symbol, and digit ("comprehensive", c8)
4. ≥ 16 characters ("passphrase", b16)

• Results...

Recipe comparison

Recipe comparison
• Comprehensive recipe (comprehensive8) makes it hard to

crack passwords
• Doesn’t that contradict [Weir 2010]?
• No: even if NIST's Shannon entropy estimates are quantitatively

invalid in general, c8 in particular is hard to crack
• But blacklists make passwords almost as hard to crack
• And passphrases (basic16) are hard to crack and are

more usable [Komanduri et al. 2011]:
• Easier to create
• Easier to remember
• Threat to validity: maybe state-of-art crackers would improve to

handle passphrases if people were required to use them

Passwords
NIST (2017) recommends:
• minimum of 8 characters
• up to 64 characters should be accepted
• blacklist compromised values
• no other security requirements

2. PASSWORD STORAGE

Password Storage
• Passwords typically stored in a file or database indexed

by username
• Strawman idea: store passwords in plaintext

• requires perfect authorization mechanisms
• requires trusted system administrators
• ...

Threat Model: Offline Attack
• Adversary can read files from disk

• Adversary can read process
memory

Note: users make this worse by reusing passwords across systems.

Password Storage
• Want: a function f such that...

1. easy to compute and store f(p) for a password p
2. hard given disclosed f(p) for attacker to recover p
3. hard to trick system by finding password q s.t. q != p yet f(p) =

f(q)

• Encryption would work, but then the key has to live
somewhere

• Cryptographic hash functions suffice!
• one-way property gives (1) and (2)
• collision resistance gives (3)

Hashed passwords
• Each user has:

• username uid
• password p

• System stores: uid, H(p)

Hashed passwords are still vulnerable
Assume: attacker does learn password file (offline
guessing attack)
• Hard to invert: i.e., given H(p) to compute p
• But what if attacker didn't care about inverting hash on

arbitrary inputs?
• i.e., only have to succeed on a small set of p's: p1, p2, ..., pn

• Then attacker could build a dictionary...

Dictionary attacks

Dictionary:
• p1, H(p1)
• p2, H(p2)
• ...
• pn, H(pn)

• Dictionary attack: lookup H(p) in dictionary to find p
• And it works because most passwords chosen by humans

are from a relatively small set

Typical passwords
[Schneier quoting AccessData in 2007]:
• 7-9 character root plus a 1-3 character appendage

• Root typically pronounceable, though not necessarily a real word
• Appendage is a suffix (90%) or prefix (10%)

• Dictionary of 1000 roots plus 100 suffixes (= 100k
passwords) cracks about 24% of all passwords

• More sophisticated dictionaries crack about 60% of
passwords within 2-4 weeks

• Given biographical data (zip code, names, etc.) and other
passwords of a user...
• success rate goes up a little
• time goes down to days or hours

Salted hashed passwords
• Vulnerability: one dictionary suffices to attack every user
• Vulnerability: passwords chosen from small space
• Countermeasure: include a unique system-chosen

nonce as part of each user's password

Salted hashed passwords
• Each user has:

• username uid
• unique salt s
• password p

• System stores: uid, s, H(s, p)

3. PASSWORD USAGE

Authenticating to a remote server
• Each user has:

• username uid
• unique salt s
• password p

• System stores: uid, s, H(s, p)

1. Hu->L: uid, p
2. L and S: establish secure channel
3. L->S: uid, p
4. S: let h = stored hashed password for uid;

let s = stored salt for uid;
if h = H(s, p)
then uid is authenticated

Threat Model: Online Attack

• Adversary can interact with the
server as a user

When authentication fails
• Guiding principle: the system might be under attack, so

don't make the attacker's job any easier
• Don't leak valid usernames:

• Prompt for username and password in parallel
• Don't reveal which was bad

• Record failed attempts and review
• Perhaps in automated way by administrators
• Perhaps manually by user at next successful login

• Lock account after too many attempts
• Rate limit login

Rate limiting
• Vulnerability: hashes are easy to compute
• Countermeasure: hash functions that are slow to

compute
• Slow hash wouldn't bother user: delay in logging hardly noticeable
• But would bother attacker constructing dictionary: delay multiplied

by number of entries
• Ideally, enough to make constructing a large dictionary prohibitively

expensive
• Examples: bcrypt, scrypt, Argon2,...

Slowing down fast hashes
• Given a fast hash function...
• Slow it down by iterating it many times:

z1 = H(p);
z2 = H(p, z1);
...
z1000 = H(p, z999);
output z1 XOR z2 XOR ... XOR z1000

• Number of iterations is a parameter to control slowdown
• originally thousands
• current thinking is 10s of thousands

• Aka key stretching

Password-Based Encryption
• PBKDF2: Password-based key derivation function [RFC

8018]
• Output: derived key k
• Input:

• Password p
• Salt s
• Iteration count c
• Key length len
• Pseudorandom function (PRF): "looks random" to an adversary

that doesn't know an input called the seed (commony instantiated
with an HMAC)

PBKDF2
Algorithm:
• F(p, s, i, c) = U(1) XOR ... XOR U(c)

• U(1) = PRF(s, i; p)
• U(j) = PRF(U(j-1); p)
• F is in essence a salted iterated hash...

• k = F(p, s, 1, c) || F(p, s, 2, c) || ... || F(p, s, n, c)
• enough copies to reach keylen
• || denotes bit concatenation

4. PASSWORD CHANGE

Password change
Motivated by...
• User forgets password (maybe just recover password)
• System forces password expiration

• Naively seems wise
• Research suggests otherwise

• Attacker learns password:
• Social engineering: deceitful techniques to manipulate a person

into disclosing information
• Online guessing: attacker uses authentication interface to guess

passwords
• Offline guessing: attacker acquires password database for system

and attempts to crack it

Change mechanisms
• Tend to be more vulnerable than the rest of the

authentication system
• Not designed or tested as well
• Have to solve the authentication problem without the benefit of a

password
• Two common mechanisms:

• Security questions
• Emailed passwords

Security questions
• Something you know: attributes of identity established at

enrollment
• Pro: you are unlikely to forget answers
• Assumes: attacker is unlikely to be able to answer

questions
• Con: might not resist targeted attacks
• Con: linking is a problem; same answers re-used in many

systems

Emailed password
• Might be your old password or a new temporary password

• one-time password: valid for single use only, maybe limited
duration

• Assumes: attacker is unlikely to have compromised your
email account

• Assumes: email service correctly authenticates you

Password lifecycle
1. Create: user chooses password
2. Store: system stores password with user identifier
3. Use: user supplies password to authenticate
4. Change/recover/reset: user wants or needs to

change password

Beyond passwords?
• Passwords are tolerated or hated by users
• Passwords are plagued by security problems
• Can we do better?
• Criteria:

• Security
• Usability
• Deployability

Schemes to replace passwords
• Password managers
• Proxies
• Federated identity management
• Graphical
• Cognitive
• Paper tokens
• Visual cryptography
• Hardware tokens
• Phone-based
• Biometric

Schemes to replace passwords
• Most schemes do better than passwords on security
• Some schemes do better and some worse on usability
• Every scheme does worse than passwords on

deployability
• Passwords are here to stay, for now
• Schemes offering some variation of single sign on seem

to offer best improvements in security and usability...

