
CS 181S October 1, 2018

Lecture 8: Secure Channels

Crypto Thus Far…

Sign

Today: Secure Channels
• Threat: attacker who controls the network

• Dolev-Yao model: attacker can read, modify, delete messages
• Harm: conversation can be learned (violating

confidentiality) or changed (violating integrity) by attacker
• Vulnerability: communication channel between sender

and receiver can be controlled by other principals
• Countermeasure: all the crypto we’ve seen so far…

Today: Secure Channels

Today: Secure Channels

Requirements:
1) Channel must provide both confidentiality and integrity
2) A and B must agree on session key(s)
3) A and B must agree on cipher suite (crypto protocols,

encryption mode, key lengths)
4) Must detecting missing messages & replay attacks.
5) Must maintain connection (and be able to end it)

Encrypt and MAC
• Pro: can compute Enc and MAC in parallel
• Con: MAC must protect confidentiality

(not actually a requirement we ever stipulated)

• Example: ssh (Secure Shell) protocol
• recommends AES-128-CBC for encryption
• recommends HMAC with SHA-2 for MAC

Encrypt and MAC
0. k_E = Gen_E(len)

k_M = Gen_M(len)
1. A: c = Enc(m; k_E)

t = MAC(m; k_M)
2. A -> B: c, t
3. B: m' = Dec(c; k_E)

t' = MAC(m'; k_M)
if t = t'
then output m'
else abort

m c t

Encrypt then MAC
• Pro: provably most secure of three options [Bellare &

Namprepre 2001]
• Pro: don't have to decrypt if MAC fails

• resist DoS

• Example: IPsec (Internet Protocol Security)
• recommends AES-CBC for encryption and HMAC-SHA2 for MAC,

among others
• or AES-GCM

Encrypt then MAC
1. A: c = Enc(m; k_E)

t = MAC(c; k_M)
2. A -> B: c, t
3. B: t' = MAC(c; k_M)

if t = t'
then output Dec(c; k_E)
else abort

m

c t

MAC then encrypt
• Pro: provably next most secure

• and just as secure as Encrypt-then-MAC for strong enough MAC
schemes

• HMAC and CBC-MAC are strong enough

• Example: SSL (Secure Sockets Layer)
• Many options for encryption, e.g. AES-128-CBC
• For MAC, standard is HMAC with many options for hash, e.g. SHA-

256

MAC then encrypt
1. A: t = MAC(m; k_M)

c = Enc(m,t; k_E)
2. A -> B: c
3. B: m',t' = Dec(c; k_E)

if t' = MAC(m'; k_M)
then output m'
else abort

m

c

Authenticated encryption
• Three combinations:

• Enc and MAC
• Enc then MAC
• MAC then Enc

• Let's unify all with a pair of algorithms:
• AuthEnc(m; kE; kM): produce an authenticated ciphertext x of

message m under encryption key kEand MAC key kM
• AuthDec(x; kE; kM): recover the plaintext message m from

authenticated ciphertext x, and verify that the MAC is valid, using
kE and kM
• Abort if MAC is invalid

Authenticated encryption
• Newer block cipher modes designed to provide

confidentiality and integrity
• OCB: Offset Codebook Mode
• CCM: Counter with CBC-MAC Mode
• GCM: Galois Counter Mode

Galois Counter Mode (GCM)

Today: Secure Channels

Requirements:
1) Channel must provide both confidentiality and integrity
2) A and B must agree on session key(s)
3) A and B must agree on cipher suite (crypto protocols,

encryption mode, key lengths)
4) Must detecting missing messages & replay attacks.
5) Must maintain connection (and be able to end it)

Agreeing on a session key

Hybrid Encryption (RSA) Diffie-Hellman

• A -> B: g, p, g^a mod p
• B -> A: g^b mod p
• A,B: k_s := g^ab mod p

• DH, ECDH

Aside: Key reuse
• Never use same key for both encryption and MAC

schemes
• Principle: every key in system should have unique

purpose

Key derivation
• Have one key: k_s
• Need four keys:

1. kea: Encrypt Alice to Bob
2. keb: Encrypt Bob to Alice
3. kma: MAC Alice to Bob
4. kmb: MAC Bob to Alice

• How to get four out of one: use a cryptographic hash
function H to derive keys...

1. kea = H(k, "Enc Alice to Bob")
2. keb = H(k, "Enc Bob to Alice")
3. kma = H(k, "MAC Alice to Bob")
4. kmb = H(k, "MAC Bob to Alice")

Key derivation
• Why hash?

• Destroys any structure in input
• Produces a fixed-size output that can be truncated, as necessary, to

produce key for underlying algorithm
• Unlikely to ever cause any of four keys to collide
• Even if one of four keys ever leaks, hard to invert hash to recover k

and learn the other keys
• Small problem: maybe the output of H isn't compatible with the

output of Gen
• For most block ciphers and MACs, not a problem

• they happily take any uniformly random sequence of bits of the right length
as keys

• For DES, it is a problem
• has weak keys that Gen should reject

• For many asymmetric algorithms, it would be a problem
• keys have to satisfy certain algebraic properties

Today: Secure Channels

Requirements:
1) Channel must provide both confidentiality and integrity
2) A and B must agree on session key(s)
3) A and B must agree on cipher suite (crypto protocols,

encryption mode, key lengths)
4) Must detecting missing messages & replay attacks.
5) Must maintain connection (and be able to end it)

Secure Socket Layer (SSL)
• SSL 2.0 (1995): designed by Netscape, contains a number

of security flaws, prohibited since 2011
• SSL 3.0 (1996): complete re-design, all accepted cipher

suites now have known vulnerabilities, prohibited since 2015
• TLS 1.0 (1999): contains known vulnerabilities, suggested

migration by June 2018
• TLS 1.1 (2006): update with significant changes in how

IVs/padding are handled to prevent known attacks
• TLS 1.2 (2008): update with modern cipher suites
• TLS 1.3 (2018): drops insecure features and introduces

additional cipher suites

SSL/TLS Handshake

ClientHello

ServerHello

ServerKeyExchange

ClientKeyExchange

Version, cipher
suites, rClient

Version, cipher
suite, rServer,
certificate

Enc_pks(ms_p)

Compute
master secret

Compute
master secret

(optional)

ChangeCipherSpec

ChangeCipherSpec

Supported Cipher Suites

Padding Oracle On Downgraded Legacy
Encryption (POODLE)

Return of Beichenbacher's Oracle Threat
(ROBOT)

Logjam

Today: Secure Channels

Requirements:
1) Channel must provide both confidentiality and integrity
2) A and B must agree on session key(s)
3) A and B must agree on cipher suite (crypto protocols,

encryption mode, key lengths)
4) Must detecting missing messages & replay attacks.
5) Must maintain connection (and be able to end it)

Message numbers
• Aka sequence numbers
• Every message that Alice sends is numbered

• 1, 2, 3, ...
• numbers increase monotonically
• never reuse a number

• Bob keeps state to remember last message number he
received

• Bob accepts only increasing message numbers
• And ditto all the above, for Bob sending to Alice

• so each principal keeps two independent counters: messages
sent, messages received

Message numbers
What if Bob detects a gap? e.g. 1, 2, 5
• Maybe Mallory deleted messages 3 and 4 from network
• Maybe Mallory detectably changed 3 and 4, causing Bob

to discard them
• In either case, channel is under active attack

• Absent availability goals, time to PANIC: abort protocol, produce
appropriate information for later auditing, shut down channel

What if network non-maliciously dropped messages or will
deliver them later?
• Let's assume underlying transport protocol guarantees

that won't happen (e.g. TCP)

Message numbers
• Message number usually implemented as a fixed-size

unsigned integer, e.g., 32 or 48 or 64 bits
• What if that int overflows and wraps back around to 0?

• Message number must be unique within conversation to prevent
Mallory from replaying old conversation

• So conversation must stop at that point
• Can start a new conversation with a new session key

To send a message from A to B
1. A:

increment sent_ctr;
if sent_ctr overflows then abort;
x = AuthEnc(sent_ctr, m; kea; kma)

2. A -> B: x
3. B:

i,m = AuthDec(x; kea; kma);
increment rcvd_ctr;
if i != rcvd_ctr then abort;
output m

To send a message from B to A
1. B:

increment sent_ctr;
if sent_ctr overflows then abort;
x = AuthEnc(sent_ctr, m; keb; kmb)

2. B -> A: x
3. A:

i,m = AuthDec(x; keb; kmb);
increment rcvd_ctr;
if i != rcvd_ctr then abort;
output m

Today: Secure Channels

Requirements:
1) Channel must provide both confidentiality and integrity
2) A and B must agree on session key(s)
3) A and B must agree on cipher suite (crypto protocols,

encryption mode, key lengths)
4) Must detecting missing messages & replay attacks.
5) Must maintain connection (and be able to end it)

TLS record

Heartbeat

Heartbleed

Truncation Attack

