Lecture 8: Secure Channels

CS 181S October 1, 2018

Crypto Thus Far...

A|B|C|D|E
A|B|C|D|E

Plamgext

vossuedx3 Aoy

INPUNOY

£

o

o

Nl

ENER O

&

>

Today: Secure Channels

Threat: attacker who controls the network
Dolev-Yao model: attacker can read, modify, delete messages

Harm: conversation can be learned (violating
confidentiality) or changed (violating integrity) by attacker

Vulnerability: communication channel between sender
and receiver can be controlled by other principals

Countermeasure: all the crypto we've seen so far...

Today: Secure Channels

Today: Secure Channels

Requirements:
1) Channel must provide both confidentiality and integrity
2) A and B must agree on session key(s)
3) A and B must agree on cipher suite (crypto protocols,
encryption mode, key lengths)
4) Must detecting missing messages & replay attacks.
9) Must maintain connection (and be able to end it)

Encrypt and MAC

Pro: can compute Enc and MAC in parallel
Con: MAC must protect confidentiality

(not actually a requirement we ever stipulated)

Example: ssh (Secure Shell) protocol

recommends AES-128-CBC for encryption
recommends HMAC with SHA-2 for MAC

Encrypt and MAC

0. k E
1. A:
2. A -
3. B:

Gen E (len)

k M = Gen M(len)

if t

c,

= Enc(m; k E)
MAC (m; k M)

t

Dec(c; k _E)
MAC(m'; k M)

then

else

tl
output m'

abort

Encrypt then MAC

Pro: provably most secure of three options [Bellare &
Namprepre 2001]

Pro: don't have to decrypt if MAC fails

resist DoS

Example: |IPsec (Internet Protocol Security)

recommends AES-CBC for encryption and HMAC-SHA2 for MAC,
among others

or AES-GCM

Encrypt then MAC

1. A: c Enc(m; k E)
t = MAC(c; k M)
2. A ->B: c, t
3. B: t' = MAC(c; k M)
if t =t
then output Dec(c; k E)
else abort

MAC then encrypt

Pro: provably next most secure

and just as secure as Encrypt-then-MAC for strong enough MAC
schemes

HMAC and CBC-MAC are strong enough

Example: SSL (Secure Sockets Layer)

Many options for encryption, e.g. AES-128-CBC

For MAC, standard is HMAC with many options for hash, e.g. SHA-
256

MAC then encrypt

1. A: t = MAC(m; k M)

c = Enc(m,t; k _E)

2. A -> B: c

3. B: m'",t' = Dec(c; k E)

if t' MAC (m' ;
then output m'
else abort

k_M)

Authenticated encryption

Three combinations:
Enc and MAC
Enc then MAC
MAC then Enc

Let's unify all with a pair of algorithms:
AuthEnc(m; kE; kM): produce an authenticated ciphertext x of
message m under encryption key kEand MAC key kM

AuthDec(x; kE; kM): recover the plaintext message m from
authenticated ciphertext x, and verify that the MAC is valid, using
KE and kM

Abort if MAC is invalid

Authenticated encryption

Newer block cipher modes designed to provide
confidentiality and integrity

OCB: Offset Codebook Mode

CCM: Counter with CBC-MAC Mode

GCM: Galois Counter Mode

GaI0|s Counter I\/Iode (GCI\/I)

¢ T i T
5i @7 @ @i
— 8] —) — [oeme
0" c 0" y Al || Hen(©)le
/
S —
l
GHASHy | 0"
! !
e
X, X, X,
: : | !
® - ® | MSB, | H
. .
oH oH oH l
¢ ¢ |
Yy, — Y, Y, r

Today: Secure Channels

Requirements:
1) Channel must provide both confidentiality and integrity
2) A and B must agree on session key(s)

Agreeing on a session key

Hybrid Encryption (RSA) Diffie-Hellman

A ->B: g, p, g*a mod p
B -> A: g”b mod p
A,B: k s := g™ab mod p

DH, ECDH

Aside: Key reuse

Never use same key for both encryption and MAC
schemes

Principle: every key in system should have unique
purpose

Key derivation

Have one key: k s

Need four keys:
kea: Encrypt Alice to Bob
keb: Encrypt Bob to Alice
kma: MAC Alice to Bob
kmb: MAC Bob to Alice

How to get four out of one: use a cryptographic hash
function H to derive keys...

kea = H(k, "Enc Alice to Bob")

keb = H(k, "Enc Bob to Alice")

kma = H(k, "MAC Alice to Bob")

kmb = H(k, "MAC Bob to Alice")

Key derivation

Why hash?
Destroys any structure in input

Produces a fixed-size output that can be truncated, as necessary, to
produce key for underlying algorithm

Unlikely to ever cause any of four keys to collide
Even if one of four keys ever leaks, hard to invert hash to recover k
and learn the other keys
Small problem: maybe the output of H isn't compatible with the
output of Gen
For most block ciphers and MACs, not a problem

they happily take any uniformly random sequence of bits of the right length
as keys

For DES, it is a problem
has weak keys that Gen should reject

For many asymmetric algorithms, it would be a problem
keys have to satisfy certain algebraic properties

Today: Secure Channels

Requirements:
1) Channel must provide both confidentiality and integrity
2) A and B must agree on session key(s)
3) A and B must agree on cipher suite (crypto protocols,
encryption mode, key lengths)

Secure Socket Layer (SSL)

SSL 2.0 (1995): designed by Netscape, contains a number
of security flaws, prohibited since 2011

SSL 3.0 (1996): complete re-design, all accepted cipher
suites now have known vulnerabilities, prohibited since 2015

TLS 1.0 (1999): contains known vulnerabilities, suggested
migration by June 2018

TLS 1.1 (2006): update with significant changes in how
|Vs/padding are handled to prevent known attacks

TLS 1.2 (2008): update with modern cipher suites

TLS 1.3 (2018): drops insecure features and introduces
additional cipher suites

SSL/TLS Handshake

Version, cipher
suites, rClient

Enc_pks(ms_p)

Compute
master secret

| ClientHello

ServerHello
—

ServerKexExchange
CIientKexExchange

ChangeCiEherSEeC

ChangeCiEherSEeC

Version, cipher
suite, rServer,
certificate

(optional)

Compute
master secret

Supported Cipher Suites

Algorithm SSL2.0 SSL3.0 TLS1.0 TLS1.1 TLS1.2 TLS1.3

RSA Yes Yes Yes Yes Yes No
DH-RSA No Yes Yes Yes Yes No

DHE-RSA (forward secrecy) No Yes Yes Yes Yes Yes
ECDH-RSA No No Yes Yes Yes No
ECDHE-RSA (forward secrecy) No No Yes Yes Yes Yes
DH-DSS No Yes Yes Yes Yes No

DHE-DSS (forward secrecy) No Yes Yes Yes Yes No!*2!
ECDH-ECDSA No No Yes Yes Yes No

ECDHE-ECDSA (forward secrecy) No No Yes Yes Yes Yes

Cipher

Type Algorithm
AES GCM[44]n 3]
AES CCM[(45Iin 8]
AES cBCcn €l
Camellia GCM“€ln 3]
Camellia CBC471n 6]
[48][n 5]
Block ARIA GCM
cipher ARIA CBCl48lin 6]
with
mode of ol
operation SEED CBC
3DES EDE cBcn€lin7]
GOST 28147-89
CNTI43In 7]
IDEA ¢BC!In 6ln 7]n 9]
DES cBclnélin 7lin 9]
RC2 cBCn6ln7]
ChaCha20-Poly1305!54In 5]
Stream
cipher

Rc4[n 1]

Nominal
strength (bits)

256, 128

256, 128

256, 128

128
112l 8l
256

128
56

40[n 10]
4O[n 10]

256

128

40 10]

SL 2.0

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Insecure

N/A

Insecure
Insecure
Insecure

Insecure

N/A

Insecure

Insecure

SSL 3.0
[n 1][n 2][n 3][n 4]

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Insecure

N/A

Insecure
Insecure
Insecure

Insecure

N/A

Insecure

Insecure

Protocol version

TLS 1.0
[n 1][n 3]

N/A
N/A

Depends on
mitigations

N/A

Depends on
mitigations

N/A

Depends on
mitigations

Depends on
mitigations

Insecure
Insecure

Insecure
Insecure
Insecure

Insecure
N/A

Insecure

Insecure

TLS 1.1
[n1]

N/A
N/A

Depends on
mitigations

N/A

Depends on
mitigations

N/A

Depends on
mitigations

Depends on
mitigations

Insecure
Insecure

Insecure
Insecure

N/A

N/A
N/A

Insecure

N/A

TLS 1.2
[n1]

Secure
Secure

Depends on
mitigations

Secure

Depends on
mitigations

Secure

Depends on
mitigations

Depends on
mitigations

Insecure

Insecure

N/A
N/A
N/A

N/A

Secure

Insecure

N/A

TLS
1.3

Secure

Secure

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A
N/A
N/A

N/A

Secure

N/A

N/A

Padding Oracle On Downgraded Legacy
Encryption (POODLE)

Return of Beichenbacher's Oracle Threat
(ROBOT)

Logjam

Client C MitM Server S
er,[...,DHE,..] R cr, [DHE_EXPORT] R
P sr,DHE P sr, DHE_EXPORT
loge) certs, sign(sks, [cr| st | psi2 | 9| %))
= ~ - N ga
(ms, ky, ko) = kdf(g?®, cr | sr) b = dlog(g® mod ps12)

(ms, k1, k2) = kdf(g?®, cr | sr)

finished(ms, log)
loge -~ authenc(k,Data’*)

Y

finished(ms, logl)
authenc(k;,Data)
authenc(ks,Data’)

A

Y

A

Today: Secure Channels

Requirements:
1) Channel must provide both confidentiality and integrity
2) A and B must agree on session key(s)
3) A and B must agree on cipher suite (crypto protocols,
encryption mode, key lengths)
4) Must detecting missing messages & replay attacks.

Message numbers

Aka sequence numbers

Every message that Alice sends is numbered
1,2, 3, ...
numbers increase monotonically
never reuse a number

Bob keeps state to remember last message number he
received

Bob accepts only increasing message numbers
And ditto all the above, for Bob sending to Alice

so each principal keeps two independent counters: messages
sent, messages received

Message numbers

What if Bob detects a gap? e.g. 1,2, 5
Maybe Mallory deleted messages 3 and 4 from network

Maybe Mallory detectably changed 3 and 4, causing Bob
to discard them

In either case, channel is under active attack

Absent availability goals, time to PANIC: abort protocol, produce
appropriate information for later auditing, shut down channel

What if network non-maliciously dropped messages or will
deliver them later?

Let's assume underlying transport protocol guarantees
that won't happen (e.g. TCP)

Message numbers

Message number usually implemented as a fixed-size
unsigned integer, e.g., 32 or 48 or 64 bits

What if that int overflows and wraps back around to 07

Message number must be unique within conversation to prevent
Mallory from replaying old conversation

So conversation must stop at that point
Can start a new conversation with a new session key

To send a message from Ato B

1. A:
increment sent ctr;
if sent ctr overflows then abort;
x = AuthEnc(sent ctr, m; kea; kma)
2. A -> B: x

i,m = AuthDec(x; kea; kma) ;
increment rcvd_ctr;
if 1 !'= rcvd ctr then abort;

output m

To send a message from £ to

1.
increment sent ctr;
if sent ctr overflows then abort;
x = AuthEnc(sent ctr, m; ;)
2. ;X
3.
i,m = AuthDec (x; ;) ;

increment rcvd ctr;
if 1 !'= rcvd ctr then abort;

output m

Today: Secure Channels

Requirements:
1) Channel must provide both confidentiality and integrity
2) A and B must agree on session key(s)
3) A and B must agree on cipher suite (crypto protocols,
encryption mode, key lengths)
4) Must detecting missing messages & replay attacks.
9) Must maintain connection (and be able to end it)

TLS record

+ Byte +0

Byte Content type
Bytes
1.4 (Major)
Bytes
5..(m-1)
Bytes
m..(p-1)
Bytes
p.(g-1)

Version

Hex
Ox14
0x15
Ox16
Ox17
Ox18

Byte +1

(Minor)

Dec
20
21
22
23
24

Byte +2

(bits 15..8)

Protocol message(s)
MAC (optional)

Padding (block ciphers only)

Type
ChangeCipherSpec
Alert
Handshake
Application

Heartbeat

Length

Byte +3

(bits 7..0)

Byte

Bytes
1.4
Bytes
5..(m-1)
Bytes
m..(p-1)
Bytes
p.(g-1)

Byte +0

Content type

(Major)

Hex
Ox14
0x15

Versi 0x16
Ox17
Ox18

Dec
20
21
22
23
24

Type
ChangeCipherSpec .
Alert
Handshake .

Application

Heartbeat

Padding (block ciphers only)

Length

Byte +3

(bits 7..0)

Heartbeat

HOW THE HEARTBLEED BUG WORKS:

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY "POTATO" (b LETTERS). ser Meg wants these 6 letters: POTATO.

Hmm....

ser Meg wants these 6 letters: POTATO.

ﬁ)
]

SERVER, ARE YOU STiLL THERE?
IFSO,REPLY “HAT" (500 LETTERS).

/

ser Meg wants these 500 letters: HAT.

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY “BIRD" (4 LETTERS).

ﬁ =

ser Meg wants these 500 letters: HAT.

HAT. Imasxequ&stsﬂe "missed

35038534 Isabel wants pag%

ctlons page Eve (amumstratxx)wan
ts to set smasterkeyto 148

snakes but not too long". Usarl(aren

wantstochangeaccolmt passwrd

Heartbleed

Truncation Attack

