Lecture 9: Public-Key Cryptography

CS 181S
September 26, 2018

Crypto Thus Far...

Key pairs

- Instead of sharing a key between pairs of principals...
- ...every principal has a pair of keys
- public key: published for the world to see
- private key: kept secret and never shared

Protocol to exchange encrypted message

1. A: $\quad c=\operatorname{Enc}\left(m ; p k _B\right)$
2. $A->B$: C
3. B: $m=\operatorname{Dec}\left(c ; s k _B\right)$
key pair: (pk_B, sk_B)

Public keys

0. B: (K_B, k_B) $=$ Gen (len)

- All public keys published in "phonebook"
- So A can lookup B's key to send message
- Length of phonebook is $\mathrm{O}(\mathrm{n})$
- So quadratic problem reduced to linear!
- Eliminates key distribution problem!

RSA

[Rivest, Shamir, Adleman 1977]

Shared Turing Award in 2002: ingenious contribution to making public-key crypto

- Gen(len):
- Pick primes p, q
- Choose e, d such that $e d=1 \bmod \operatorname{lcm}(p-1, q-1)$
- $p k=(n, e), s k=(p, q, d)$
- Enc(m, pk)

$$
c=m^{e} \bmod n
$$

- Dec(c, sk):

$$
m=c^{d} \bmod n
$$

Problems with Textbook RSA

- Deterministic: given same plaintext and key, always produces the same ciphertext
- Small numbers: if $\mathrm{m}^{\wedge} \mathrm{e}<\mathrm{n}$, then log is easy to compute
- Big numbers: if $m>n$, can't compute do math mod n

Solution 1: Padding

- PKCS\#1 v1.5: 0x00 0x02 [non-zero bytes] 0x00 [message]
- Vulnerable to a padding oracle attack!
- OAEP (Optimal Asymmetric Encryption Padding)
- Security proof (with assumptions)

Square-and-Multiply

res = 1 ;
while $(\exp >0)$ \{

$$
\text { if }(\exp \% 2==1)\{
$$

res $=$ res * base \% p;
\}
base = base^2 \% p;
exp >> 1;
\}
return res;

Side Channels

- Power
- Timing
- EM Radiation
- Acoustics

Blinded RSA

[Rivest, Shamir, Adleman 1977]

Shared Turing Award in 2002: ingenious contribution to making public-key crypto

- Gen(len):
- Pick primes p, q
- Choose e, d such that $e d=1 \bmod \operatorname{lcm}(p-1, q-1)$
- $p k=(n, e), s k=(p, q, d)$
- Enc(m, pk)

$$
c=(m r)^{e} \cdot r^{-e} \bmod n
$$

- Dec(c, sk):

$$
m=c^{d} \bmod n
$$

Solution 2: Hybrid encryption

- Assume:

- Symmetric encryption scheme (Gen_SE, Enc_SE, Dec_SE)
- Public-key encryption scheme (Gen_PKE, Enc_PKE, Dec_PKE)
- Use public-key encryption to establish a shared session key
- Avoids quadratic problem, assuming existence of phonebook
- Avoids problem of key distribution
- Use symmetric encryption to exchange long plaintext encrypted under session key
- Gain efficiency of block cipher and mode

Protocol to exchange encrypted message

0. B: (pk_B, sk_B) = Gen_PKE (len_PKE) publish (B, pk_B)

1. $A: k_{1} s=G e n _S E\left(l e n _S E\right)$
c1 = Enc_PKE (k_s; pk_B)
$\mathrm{c} 2=\mathrm{Enc} \mathrm{SE}^{\mathrm{SE}}\left(\mathrm{m} ; \mathrm{k}_{\mathbf{\prime}} \mathrm{s}\right)$
2. A -> B: c1, c2
3. $B: k_{1} s=\operatorname{Dec}$ PKE ($\left.c 1 ; ~ s k _B\right)$
m = Dec_SE (c2; k_s)

Session keys

- If key compromised, only those messages encrypted under it are disclosed
- Used for a brief period then discarded
- cryptoperiod: length of time for which key is valid
- in this case, for a single (long) message
- not intended for reuse in future messages
- only intended for unidirectional usage:
- A->B, not B->A

DIGITAL SIGNATURES

Recall: Key pairs

- Instead of sharing a key between pairs of principals...
- ...every principal has a pair of keys
- public key: published for the world to see
- private key: kept secret and never shared

Key pair terminology

Encryption
 Digital Signatures

Public key Encryption key Verification key
Private key Decryption key Signing key

Digital signature scheme

A digital signature scheme is a triple (Gen, Sign, Ver):

- Gen(len): generate a key pair (pk, sk) of length len
- Sign(m; sk): sign message m with key sk, producing signature s as output
- $\operatorname{Ver}(\mathrm{m}, \mathrm{s}$; sk): verify signature s on message m with key pk

Protocol to exchange signed message

0. A: (K_A,k_A) = Gen (len)
1. $A: s=\operatorname{Sign}\left(m ; k _A\right)$
2. A $->B: m$, s
3. B: accept if $\operatorname{Ver}(\mathrm{m}$; $\mathrm{s} ; \mathrm{K}$ _A)

- Message is sent in plaintext: no protection of confidentiality
- Goal is to detect modification not prevent

Security of digital signatures

- Must be hard to forge signature for a message without knowledge of key
...like handwritten signatures
- Even if in possession of multiple (message, signature) pairs for that key
...unlike handwritten signatures

DSA

DSA: Digital Signature Algorithm [Kravitz 1991]

- Standardized by NIST and made available royalty-free in 1991/1993
- Used for decades without any serious attacks
- Closely related to Elgamal encryption

RSA

- Core ideas are the same as RSA encryption
- Common mistake: "RSA sign = encrypt with private key"
- Truth (in real world, outside of textbooks):
- there's a core RSA function R that works with either pk or sk
- RSA encrypt = do some prep work on m then call R with pk
- RSA sign = do different prep work on m then call R with sk
- Prep work: recall "textbook RSA is insecure"
- (For encryption: OAEP)
- For signatures: PSS (probabilistic signature scheme)
- Also need to handle long messages...

Signatures with hashing

1. $\mathbf{A}: \mathbf{s}=\operatorname{Sign}(\mathrm{H}(\mathrm{m}) ; \mathbf{k}$ _A)
2. A $->\mathrm{B}: \mathrm{m}$, s
3. B: accept if Ver (H(m) ; s; K_A)

Blind signatures

[Chaum 1983]

- Purpose: signer doesn't know what they are signing
- Two additional algorithms: Blind and Unblind
- Unblind(Sign(Blind(m); k)) = Sign(m; k)
- Uses: e-cash, e-voting

Group signatures

[Chaum and van Heyst 1991]

- Purpose: one member of group signs anonymously on behalf of group
- Introduces a group manager who controls membership
- Two new protocols: Join and Revoke, to manage membership
- One new algorithm: Open, which manager can run to reveal who signed a message

