
CS 181S September 26, 2018

Lecture 9: Public-Key Cryptography

Crypto Thus Far…

Key pairs
• Instead of sharing a key between pairs of principals...
• ...every principal has a pair of keys

• public key: published for the world to see
• private key: kept secret and never shared

Protocol to exchange encrypted message
1. A: c = Enc(m; pk_B)
2. A -> B: c
3. B: m = Dec(c; sk_B)

key pair: (pk_B, sk_B)

Public keys
0. B: (K_B, k_B) = Gen(len)
1. ...

• All public keys published in "phonebook"
• So A can lookup B's key to send message
• Length of phonebook is O(n)
• So quadratic problem reduced to linear!
• Eliminates key distribution problem!

RSA
[Rivest, Shamir, Adleman 1977]
Shared Turing Award in 2002: ingenious
contribution to making public-key crypto

• Gen(len):
• Pick primes 𝑝, 𝑞
• Choose 𝑒, 𝑑 such that 𝑒𝑑 = 1	mod	lcm(𝑝 − 1, 𝑞 − 1)
• 𝑝𝑘 = 𝑛, 𝑒 , 	𝑠𝑘 = (𝑝, 𝑞, 𝑑)	

• Enc(m, pk)

• Dec(c, sk):
𝑐 = 𝑚6	mod	𝑛

𝑚 = 𝑐7	mod	𝑛

Problems with Textbook RSA
• Deterministic: given same plaintext and key, always

produces the same ciphertext
• Small numbers: if m^e < n, then log is easy to compute
• Big numbers: if m > n, can't compute do math mod n

Solution 1: Padding
• PKCS#1 v1.5: 0x00 0x02 [non-zero bytes] 0x00 [message]

• Vulnerable to a padding oracle attack!
• OAEP (Optimal Asymmetric Encryption Padding)

• Security proof (with assumptions)

Square-and-Multiply
res = 1;
while (exp > 0) {

if (exp % 2 == 1){
res = res * base % p;

}
base = base^2 % p;
exp >> 1;

}
return res;

Side Channels

• Power
• Timing
• EM Radiation
• Acoustics

Blinded RSA
[Rivest, Shamir, Adleman 1977]
Shared Turing Award in 2002: ingenious
contribution to making public-key crypto

• Gen(len):
• Pick primes 𝑝, 𝑞
• Choose 𝑒, 𝑑 such that 𝑒𝑑 = 1	mod	lcm(𝑝 − 1, 𝑞 − 1)
• 𝑝𝑘 = 𝑛, 𝑒 , 	𝑠𝑘 = (𝑝, 𝑞, 𝑑)	

• Enc(m, pk)

• Dec(c, sk):
𝑐 = (𝑚𝑟)6⋅ 𝑟:6	mod	𝑛

𝑚 = 𝑐7	mod	𝑛

Solution 2: Hybrid encryption
• Assume:

• Symmetric encryption scheme (Gen_SE, Enc_SE, Dec_SE)
• Public-key encryption scheme (Gen_PKE, Enc_PKE, Dec_PKE)

• Use public-key encryption to establish a shared session key
• Avoids quadratic problem, assuming existence of phonebook
• Avoids problem of key distribution

• Use symmetric encryption to exchange long plaintext
encrypted under session key
• Gain efficiency of block cipher and mode

Protocol to exchange encrypted message

0. B: (pk_B, sk_B) = Gen_PKE(len_PKE)
publish (B, pk_B)

1. A: k_s = Gen_SE(len_SE)
c1 = Enc_PKE(k_s; pk_B)
c2 = Enc_SE(m; k_s)

2. A -> B: c1, c2
3. B: k_s = Dec_PKE(c1; sk_B)

m = Dec_SE(c2; k_s)

m

Session keys
• If key compromised, only those messages encrypted

under it are disclosed
• Used for a brief period then discarded

• cryptoperiod: length of time for which key is valid
• in this case, for a single (long) message
• not intended for reuse in future messages

• only intended for unidirectional usage:
• A->B, not B->A

DIGITAL SIGNATURES

Recall: Key pairs
• Instead of sharing a key between pairs of principals...
• ...every principal has a pair of keys

• public key: published for the world to see
• private key: kept secret and never shared

Key pair terminology

Encryption Digital Signatures

Public key Encryption key Verification key

Private key Decryption key Signing key

Digital signature scheme
A digital signature scheme is a triple (Gen, Sign, Ver):
• Gen(len): generate a key pair (pk,sk) of length len
• Sign(m; sk): sign message m with key sk, producing

signature s as output
• Ver(m, s; sk): verify signature s on message m with key pk

Sign

Protocol to exchange signed message
0. A: (K_A,k_A) = Gen(len)
1. A: s = Sign(m; k_A)
2. A -> B: m, s
3. B: accept if Ver(m; s; K_A)

• Message is sent in plaintext: no protection of
confidentiality

• Goal is to detect modification not prevent

...what if message is too long for asymmetric algorithms?

Security of digital signatures
• Must be hard to forge signature for a message without

knowledge of key
...like handwritten signatures

• Even if in possession of multiple (message, signature)
pairs for that key

...unlike handwritten signatures

DSA
DSA: Digital Signature Algorithm [Kravitz 1991]
• Standardized by NIST and made available royalty-free in

1991/1993
• Used for decades without any serious attacks
• Closely related to Elgamal encryption

RSA
• Core ideas are the same as RSA encryption
• Common mistake: “RSA sign = encrypt with private key”
• Truth (in real world, outside of textbooks):

• there's a core RSA function R that works with either pk or sk
• RSA encrypt = do some prep work on m then call R with pk
• RSA sign = do different prep work on m then call R with sk
• Prep work: recall “textbook RSA is insecure”

• (For encryption: OAEP)
• For signatures: PSS (probabilistic signature scheme)

• Also need to handle long messages…

Signatures with hashing
1. A: s = Sign(H(m); k_A)
2. A -> B: m, s
3. B: accept if Ver(H(m); s; K_A)

Blind signatures
[Chaum 1983]
• Purpose: signer doesn’t know what they are signing
• Two additional algorithms: Blind and Unblind
• Unblind(Sign(Blind(m); k)) = Sign(m; k)
• Uses: e-cash, e-voting

Group signatures
[Chaum and van Heyst 1991]
• Purpose: one member of group signs anonymously on

behalf of group
• Introduces a group manager who controls membership
• Two new protocols: Join and Revoke, to manage

membership
• One new algorithm: Open, which manager can run to

reveal who signed a message

