
CS 181S September 24, 2018

Lecture 6: Symmetric Cryptography

The Big Picture Thus Far…

Attacks
are perpetrated by

threats
that inflict

harm
by exploiting
vulnerabilities

which are controlled by
countermeasures.

Purpose of Encryption
• Threat: attacker who controls the network

• can read, modify, delete messages
• in essence, the attacker is the network
• Dolev-Yao model [1983]

Purpose of encryption
• Threat: attacker who controls the network

• can read, modify, delete messages
• in essence, the attacker is the network
• Dolev-Yao model [1983]

• Harm: messages containing secret information disclosed
to attacker (violating confidentiality)

• Vulnerability: communication channel between sender
and receiver can be read by other principals

• Countermeasure: encryption

Classical Cryptography

Kerckhoffs' Principle
• Secrecy should depend upon the key remaining secret
• Secrecy should not depend upon the algorithm remaining

secret
• Instance of Open Design
• Proprietary encryption schemes are to be avoided

• Just google "proprietary encryption broken"

Cryptography

cf. CS 4830/6830 cf. CS 6832

Tenants of modern cryptography
When inventing a cryptographic algorithm/protocol:
• Formulate a precise definition of security
• Provide a rigorous mathematical proof that the

cryptographic algorithm/protocol satisfies the definition of
security

• State any required assumptions in the proof, keeping
them as minimal as possible

(Symmetric) Encryption algorithms
• Gen(1^n): generate a key of length n
• Enc(m; sk): encrypt message (aka plaintext or cleartext)

m under key sk
• Dec(c; sk): decrypt ciphertext c with key sk

Enc

Dec

(Gen, Enc, Dec) is a symmetric-key encryption scheme aka
cryptosystem

Shared key
• How did Alice and Bob come to share key k?

• maybe they met way in advance
• maybe a trusted third party distributed the same key to both of

them
• better answers to come...

• But at some point, it was generated and shared

"Secure" encryption scheme?
Given ciphertext, cannot...
• Determine key?

• Defined as "bits of security"
• Misses the point: we want to protect message secrecy

• Determine plaintext?
• What if you could get 90% of plaintext?

• Determine any character of plaintext?
• What if you could determine it's greater than 1000?

• Determine any function of the plaintext!
• "Right" definition, but must be formulated carefully, and is stronger

than some (many) real-world practical encryption schemes

Bits of Security
• Assume that attack of concern is determining the key,

given many ciphertext/plaintext pairs
• Brute-force attack: recover key by trying every possible

key
• e.g., AES-128, try all 2^128 keys

• Break is an attack that recovers key in less work than
brute-force

• Suppose best-known attack requires 2^X
operations....then X is the strength aka security level of
the encryption scheme
• Best case is that strength = key length
• As attacks are discovered, strength degrades

• e.g., 3DES-168 has known attack that requires 2^112 operations,
reducing strength from 168 to 112

Perfect encryption
One-time pad:
• Gen(len) = uniformly random sequence of bits of length len
• Enc(m; k) = Dec(m; k) = m XOR k

• length(m) = length(k)
Security:
• Does reveal length of plaintext
• But nothing else!
Practicality:
• Keys must be long (as long as messages)
• Keys can never be reused, would reveal relationships

• e.g., (m1 XOR k) XOR (m2 XOR k) = m1 XOR m2
• Distributing one-time use long keys is hard

Stream Ciphers

Block Ciphers
• Encryption schemes that operate on fixed-size messages
• The fixed-size is a block
• Well-known examples:

• DES
• 3DES
• AES

DES
• DES (Data Encryption Standard)

• Block size: 64 bits
• Key size: 56 bits
• Designed by IBM in 1973-4, tweaked by the NSA, then became the

US standard for encryption. International adoption followed.
• 3DES (Triple DES)

• Block size: 64 bits
• Key size: 112 or 168 bits
• Introduced in 1998, because 56 bit keys had become feasible to

brute force.
• 3DES is simply three DES encryptions with two different keys, for

an effective 112 bit key; or with three different keys, for an effective
168 bit key.

AES
AES (Advanced Encryption Standard)
• Block size: 128 bits
• Key size: 128, 192, or 256 bits
• Public competition held by NIST, ending in 2001
• Now the US standard, approved by the NSA for Top

Secret information
• Currently no practical attacks known

Key lengths
• Various recommendations for strength summarized at

https://www.keylength.com/en/
• Based on:

• known attacks
• hardware capabilities
• predicted advances

• Why not use highest strength possible? Performance.

Key lengths

The obvious idea...
• Divide long message into short chunks, each the size of a

block
• Encrypt each block with the block cipher

m

The obvious idea...
• Divide long message into short chunks, each the size of a

block
• Encrypt each block with the block cipher

m1 m2 m3 m4 m5

c1 c2 c3 c4 c5

Enc(. ; k)

...is a bad idea

Enc-ECB(Tux; k)

Called electronic code book
(ECB) mode

Good modes
• Cipher Block Chaining (CBC) mode

• idea: XOR previous ciphertext block into current plaintext block
• Counter (CTR) mode

• idea: derive one-time pad from increasing counter
• (and others)
• With both:

• every ciphertext block depends in some way upon previous
plaintext or ciphertext blocks

• so even if plaintext blocks repeat, ciphertext blocks don't
• so intra-message repetition doesn't disclose information

Good modes

Enc(Tux; k)

but what if you encrypt Tux twice under the same key?

Good modes
• Problem: block ciphers are deterministic: inter-message

repetition is visible to attacker
• Both CBC and CTR modes require an additional

parameter: a nonce
• Enc(m; nonce; k)
• Dec(c; nonce; k)
• CBC calls the nonce an initialization vector (IV)

• Different nonces make each encryption different than
others
• Hence inter-message repetition doesn't disclose information

Nonces
A nonce is a number used once

Must be
• unique: never used before in lifetime of system
and/or (depending on intended usage)
• unpredictable: attacker can't guess next nonce
given all previous nonces in lifetime of system

Nonce sources
• counter

• requires state
• easy to implement
• can overflow
• highly predictable

• clock: just a counter
• random number generator

• might not be unique, unless drawn from large
space

• might or might not be unpredictable
• generating randomness:

• standard library generators often are not
cryptographically strong, i.e., unpredictable by
attackers

• cryptographically strong randomness is a black art

What if the message length isn't exactly a multiple of block
length? End up with final block that isn't full:

Non-solution: pad out final block with 0's (not reversible)

Solution: Let B be the number of bytes that need to be
added to final plaintext block to reach block length. Pad
with B copies of the byte representing B. Called PKCS #5
or #7 padding.

Padding

m

Protection of integrity
• Threat: attacker who controls the network

• Dolev-Yao model: attacker can read, modify, delete messages
• Harm: information contained in messages can be

changed by attacker (violating integrity)
• Vulnerability: communication channel between sender

and receiver can be controlled by other principals
• Countermeasure: message authentication codes

(MACs)
• beware: not the same "MAC" as mandatory access control

Encryption and integrity

Encryption and integrity

NO!
• Plaintext block might be random number, and recipient has no

way to detect change in random number
• Attacker might substitute ciphertext from another execution of

same protocol
• In some block modes (e.g., CTR), it's easy to flip individual bits

• change "admin=0" to "admin=1"
• In some block modes (e.g., CBC), it's easy to truncate blocks

from beginning of message
• ...

So you can't get integrity solely from encryption

MAC algorithms
• Gen(len): generate a key of length len
• MAC(m; k): produce a tag for message m with
key k
• message may be arbitrary size
• tag is typically fixed length

• “Secure MAC”? Must be hard to forge tag for a
message without knowledge of key

MAC

Real-world MACs
• CBC-MAC

• Parameterized on a block cipher
• Core idea: encrypt message with block cipher in CBC mode, use

very last ciphertext block as the tag
• HMAC

• Parameterized on a hash function
• Core idea: hash message together with key
• Your everyday hash function isn't good enough...

Hash functions
• Input: arbitrary size bit string
• Output: fixed size bit string

• compression: many inputs map to same output, hence creating
collision

• for use with hash tables, diffusion: minimize collisions (and
clustering)

Cryptographic hash functions
• Aka message digest
• Stronger requirements than (plain old) hash

functions
• Goal: hash is compact representation of

original like a fingerprint
• Hard to find 2 people with same fingerprint
• Whether you get to pick pairs of people, or whether

you start with one person and find another
...collision-resistant

• Given person easy to get fingerprint
• Given fingerprint hard to find person

...one-way

Real-world hash functions
• MD5: Ron Rivest (1991)

• 128 bit output
• Collision resistance broken 2004-8
• Can now find collisions in seconds
• Don't use it

• SHA-1: NSA (1995)
• 160 bit output
• Theoretical attacks that reduce strength to less than 80 bits
• As of 2017, “practical attack” on PDFs: https://shattered.io/
• Industry has been deprecating SHA-1 over the couple years

Real world hash functions
• SHA-2: NSA (2001)

• Family of algorithms with output sizes {224, 256, 385, 512}
• In principle, could one day be vulnerable to similar attacks as SHA-

1
• SHA-3: public competition (won in 2012, standardized by

NIST in 2015)
• Same output sizes as SHA-2
• Plus a variable-length output called SHAKE

Encrypt and MAC
0. k_E = Gen_E(len)

k_M = Gen_M(len)
1. A: c = Enc(m; k_E)

t = MAC(m; k_M)
2. A -> B: c, t
3. B: m' = Dec(c; k_E)

t' = MAC(m'; k_M)
if t = t'
then output m'
else abort

m

c t

Encrypt and MAC
• Pro: can compute Enc and MAC in parallel
• Con: MAC must protect confidentiality

• Example: ssh (Secure Shell) protocol
• recommends AES-128-CBC for encryption
• recommends HMAC with SHA-2 for MAC

Aside: Key reuse
• Never use same key for both encryption and MAC

schemes
• Principle: every key in system should have unique

purpose

Encrypt then MAC
1. A: c = Enc(m; k_E)

t = MAC(c; k_M)
2. A -> B: c, t
3. B: t' = MAC(c; k_M)

if t = t'
then output Dec(c; k_E)
else abort

m

c t

Encrypt then MAC
• Pro: provably most secure of three options [Bellare &

Namprepre 2001]
• Pro: don't have to decrypt if MAC fails

• resist DoS

• Example: IPsec (Internet Protocol Security)
• recommends AES-CBC for encryption and HMAC-SHA1 for MAC,

among others
• or AES-GCM

MAC then encrypt
1. A: t = MAC(m; k_M)

c = Enc(m,t; k_E)
2. A -> B: c
3. B: m',t' = Dec(c; k_E)

if t' = MAC(m'; k_M)
then output m'
else abort

m

c

MAC then encrypt
• Pro: provably next most secure

• and just as secure as Encrypt-then-MAC for strong enough MAC
schemes

• HMAC and CBC-MAC are strong enough

• Example: SSL (Secure Sockets Layer)
• Many options for encryption, e.g. AES-128-CBC
• For MAC, standard is HMAC with many options for hash, e.g. SHA-

256

Authenticated encryption
• Three combinations:

• Enc and MAC
• Enc then MAC
• MAC then Enc

• Let's unify all with a pair of algorithms:
• AuthEnc(m; ke; km): produce an authenticated ciphertext x of

message m under encryption key ke and MAC key km
• AuthDec(x; ke; km): recover the plaintext message m from

authenticated ciphertext x, and verify that the MAC is valid, using
ke and km
• Abort if MAC is invalid

Authenticated encryption
• Newer block cipher modes designed to provide

confidentiality and integrity
• OCB: Offset Codebook Mode
• CCM: Counter with CBC-MAC Mode
• GCM: Galois Counter Mode

