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Lecture 6: Symmetric Cryptography



The Big Picture Thus Far…

Attacks 
are perpetrated by 

threats
that inflict 

harm
by exploiting
vulnerabilities

which are controlled by 
countermeasures.



Purpose of Encryption
• Threat: attacker who controls the network

• can read, modify, delete messages
• in essence, the attacker is the network
• Dolev-Yao model [1983]



Purpose of encryption
• Threat: attacker who controls the network
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• Harm: messages containing secret information disclosed 
to attacker (violating confidentiality)

• Vulnerability: communication channel between sender 
and receiver can be read by other principals

• Countermeasure:  encryption



Classical Cryptography



Kerckhoffs' Principle
• Secrecy should depend upon the key remaining secret
• Secrecy should not depend upon the algorithm remaining 

secret
• Instance of Open Design
• Proprietary encryption schemes are to be avoided

• Just google "proprietary encryption broken"



Cryptography

cf. CS 4830/6830 cf. CS 6832



Tenants of modern cryptography
When inventing a cryptographic algorithm/protocol:
• Formulate a precise definition of security
• Provide a rigorous mathematical proof that the 

cryptographic algorithm/protocol satisfies the definition of 
security

• State any required assumptions in the proof, keeping 
them as minimal as possible



(Symmetric) Encryption algorithms
• Gen(1^n):  generate a key of length n
• Enc(m; sk):  encrypt message (aka plaintext or cleartext) 

m under key sk
• Dec(c; sk):  decrypt ciphertext c with key sk

Enc

Dec

(Gen, Enc, Dec) is a symmetric-key encryption scheme aka 
cryptosystem



Shared key
• How did Alice and Bob come to share key k?

• maybe they met way in advance
• maybe a trusted third party distributed the same key to both of 

them
• better answers to come...

• But at some point, it was generated and shared



"Secure" encryption scheme?
Given ciphertext, cannot...
• Determine key?

• Defined as "bits of security"
• Misses the point: we want to protect message secrecy

• Determine plaintext?
• What if you could get 90% of plaintext?

• Determine any character of plaintext?
• What if you could determine it's greater than 1000?

• Determine any function of the plaintext!
• "Right" definition, but must be formulated carefully, and is stronger 

than some (many) real-world practical encryption schemes



Bits of Security
• Assume that attack of concern is determining the key, 

given many ciphertext/plaintext pairs
• Brute-force attack:  recover key by trying every possible 

key
• e.g., AES-128, try all 2^128 keys

• Break is an attack that recovers key in less work than 
brute-force

• Suppose best-known attack requires 2^X 
operations....then X is the strength aka security level of 
the encryption scheme
• Best case is that strength = key length
• As attacks are discovered, strength degrades

• e.g., 3DES-168 has known attack that requires 2^112 operations, 
reducing strength from 168 to 112



Perfect encryption
One-time pad:
• Gen(len) = uniformly random sequence of bits of length len
• Enc(m; k) = Dec(m; k) = m XOR k

• length(m) = length(k)
Security:
• Does reveal length of plaintext
• But nothing else!
Practicality:
• Keys must be long (as long as messages)
• Keys can never be reused, would reveal relationships

• e.g., (m1 XOR k) XOR (m2 XOR k) = m1 XOR m2
• Distributing one-time use long keys is hard



Stream Ciphers



Block Ciphers
• Encryption schemes that operate on fixed-size messages
• The fixed-size is a block
• Well-known examples:

• DES
• 3DES
• AES



DES
• DES (Data Encryption Standard)

• Block size: 64 bits
• Key size: 56 bits
• Designed by IBM in 1973-4, tweaked by the NSA, then became the 

US standard for encryption. International adoption followed.
• 3DES (Triple DES)

• Block size: 64 bits
• Key size: 112 or 168 bits
• Introduced in 1998, because 56 bit keys had become feasible to 

brute force.
• 3DES is simply three DES encryptions with two different keys, for 

an effective 112 bit key; or with three different keys, for an effective 
168 bit key.



AES
AES (Advanced Encryption Standard)
• Block size: 128 bits
• Key size: 128, 192, or 256 bits
• Public competition held by NIST, ending in 2001
• Now the US standard, approved by the NSA for Top 

Secret information
• Currently no practical attacks known



Key lengths
• Various recommendations for strength summarized at 

https://www.keylength.com/en/
• Based on:

• known attacks
• hardware capabilities
• predicted advances

• Why not use highest strength possible?  Performance.



Key lengths



The obvious idea...
• Divide long message into short chunks, each the size of a 

block
• Encrypt each block with the block cipher

m



The obvious idea...
• Divide long message into short chunks, each the size of a 

block
• Encrypt each block with the block cipher

m1 m2 m3 m4 m5

c1 c2 c3 c4 c5

Enc( . ; k)



...is a bad idea

Enc-ECB(Tux; k)

Called electronic code book 
(ECB) mode



Good modes
• Cipher Block Chaining (CBC) mode

• idea:  XOR previous ciphertext block into current plaintext block
• Counter (CTR) mode

• idea:  derive one-time pad from increasing counter
• (and others)
• With both:

• every ciphertext block depends in some way upon previous 
plaintext or ciphertext blocks

• so even if plaintext blocks repeat, ciphertext blocks don't
• so intra-message repetition doesn't disclose information



Good modes

Enc(Tux; k)

but what if you encrypt Tux twice under the same key?



Good modes
• Problem:  block ciphers are deterministic:  inter-message 

repetition is visible to attacker
• Both CBC and CTR modes require an additional 

parameter:  a nonce
• Enc(m; nonce; k)
• Dec(c; nonce; k)
• CBC calls the nonce an initialization vector (IV)

• Different nonces make each encryption different than 
others
• Hence inter-message repetition doesn't disclose information



Nonces
A nonce is a number used once

Must be
• unique:  never used before in lifetime of system
and/or (depending on intended usage)
• unpredictable:  attacker can't guess next nonce 
given all previous nonces in lifetime of system



Nonce sources
• counter

• requires state
• easy to implement
• can overflow
• highly predictable

• clock:  just a counter
• random number generator

• might not be unique, unless drawn from large 
space

• might or might not be unpredictable
• generating randomness:

• standard library generators often are not 
cryptographically strong, i.e., unpredictable by 
attackers

• cryptographically strong randomness is a black art



What if the message length isn't exactly a multiple of block 
length?  End up with final block that isn't full:

Non-solution:  pad out final block with 0's (not reversible)

Solution:  Let B be the number of bytes that need to be 
added to final plaintext block to reach block length.  Pad 
with B copies of the byte representing B. Called PKCS #5 
or #7 padding.

Padding

m



Protection of integrity
• Threat: attacker who controls the network

• Dolev-Yao model:  attacker can read, modify, delete messages
• Harm: information contained in messages can be 

changed by attacker (violating integrity)
• Vulnerability: communication channel between sender 

and receiver can be controlled by other principals
• Countermeasure:  message authentication codes 

(MACs)
• beware:  not the same "MAC" as mandatory access control



Encryption and integrity



Encryption and integrity

NO!
• Plaintext block might be random number, and recipient has no 

way to detect change in random number
• Attacker might substitute ciphertext from another execution of 

same protocol
• In some block modes (e.g., CTR), it's easy to flip individual bits

• change "admin=0" to "admin=1"
• In some block modes (e.g., CBC), it's easy to truncate blocks 

from beginning of message
• ...

So you can't get integrity solely from encryption



MAC algorithms
• Gen(len):  generate a key of length len
• MAC(m; k):  produce a tag for message m with 
key k
• message may be arbitrary size
• tag is typically fixed length

• “Secure MAC”? Must be hard to forge tag for a 
message without knowledge of key

MAC



Real-world MACs
• CBC-MAC

• Parameterized on a block cipher
• Core idea:  encrypt message with block cipher in CBC mode, use 

very last ciphertext block as the tag
• HMAC

• Parameterized on a hash function
• Core idea:  hash message together with key
• Your everyday hash function isn't good enough...



Hash functions
• Input:  arbitrary size bit string
• Output:  fixed size bit string

• compression:  many inputs map to same output, hence creating 
collision

• for use with hash tables, diffusion: minimize collisions (and 
clustering)



Cryptographic hash functions
• Aka message digest
• Stronger requirements than (plain old) hash 

functions
• Goal:  hash is compact representation of 

original like a fingerprint
• Hard to find 2 people with same fingerprint
• Whether you get to pick pairs of people, or whether 

you start with one person and find another
...collision-resistant

• Given person easy to get fingerprint
• Given fingerprint hard to find person

...one-way



Real-world hash functions
• MD5:  Ron Rivest (1991)

• 128 bit output
• Collision resistance broken 2004-8
• Can now find collisions in seconds
• Don't use it

• SHA-1:  NSA (1995)
• 160 bit output
• Theoretical attacks that reduce strength to less than 80 bits
• As of 2017, “practical attack” on PDFs:  https://shattered.io/
• Industry has been deprecating SHA-1 over the couple years



Real world hash functions
• SHA-2:  NSA (2001)

• Family of algorithms with output sizes {224, 256, 385, 512}
• In principle, could one day be vulnerable to similar attacks as SHA-

1
• SHA-3:  public competition (won in 2012, standardized by 

NIST in 2015)
• Same output sizes as SHA-2
• Plus a variable-length output called SHAKE



Encrypt and MAC
0. k_E = Gen_E(len)

k_M = Gen_M(len)
1. A: c = Enc(m; k_E)

t = MAC(m; k_M)
2. A -> B: c, t
3. B: m' = Dec(c; k_E)

t' = MAC(m'; k_M)
if t = t'
then output m' 
else abort

m

c t



Encrypt and MAC
• Pro:  can compute Enc and MAC in parallel
• Con:  MAC must protect confidentiality

• Example:  ssh (Secure Shell) protocol
• recommends AES-128-CBC for encryption
• recommends HMAC with SHA-2 for MAC



Aside:  Key reuse
• Never use same key for both encryption and MAC 

schemes
• Principle:  every key in system should have unique 

purpose



Encrypt then MAC
1. A: c = Enc(m; k_E)

t = MAC(c; k_M)
2. A -> B: c, t
3. B: t' = MAC(c; k_M)

if t = t'
then output Dec(c; k_E)
else abort

m

c t



Encrypt then MAC
• Pro:  provably most secure of three options [Bellare & 

Namprepre 2001]
• Pro:  don't have to decrypt if MAC fails 

• resist DoS

• Example:  IPsec (Internet Protocol Security)
• recommends  AES-CBC for encryption and HMAC-SHA1 for MAC, 

among others
• or AES-GCM



MAC then encrypt
1. A: t = MAC(m; k_M)

c = Enc(m,t; k_E)      
2. A -> B: c
3. B: m',t' = Dec(c; k_E)

if t' = MAC(m'; k_M) 
then output m'
else abort

m

c



MAC then encrypt
• Pro:  provably next most secure

• and just as secure as Encrypt-then-MAC for strong enough MAC 
schemes

• HMAC and CBC-MAC are strong enough

• Example:  SSL (Secure Sockets Layer)
• Many options for encryption, e.g. AES-128-CBC
• For MAC, standard is HMAC with many options for hash, e.g. SHA-

256



Authenticated encryption
• Three combinations:

• Enc and MAC 
• Enc then MAC
• MAC then Enc

• Let's unify all with a pair of algorithms:
• AuthEnc(m; ke; km):  produce an authenticated ciphertext x of 

message m under encryption key ke and MAC key km
• AuthDec(x; ke; km):  recover the plaintext message m from 

authenticated ciphertext x, and verify that the MAC is valid, using 
ke and km
• Abort if MAC is invalid



Authenticated encryption
• Newer block cipher modes designed to provide 

confidentiality and integrity
• OCB:  Offset Codebook Mode
• CCM:  Counter with CBC-MAC Mode
• GCM:  Galois Counter Mode


