
CS 181S September 12, 2018

Lecture 3: Threat Models

Idea 1: Eliminate Vulnerabilities

Bases for Trust

• Synthetic Trust: Trust derived from modification of the system. Trust
in the whole derives from how components are combined. Examples:
OS isolation, reference monitors, firewalls

• Analytic Trust: Trust derived from testing and/or reasoning to justify
conclusions about what a component or system will and/or will not do.
Trust in an artifact is justified by trust in some method of analysis.

• Axiomatic Trust: Trust derived from beliefs that we accept on faith.
We might trust some hardware or software, for example, because it is
built or sold by a given company. We are putting our faith in the
company's reputation.

Analytic TrustSynthetic Trust Axiomatic Trust

Language Support

Bases for Trust

• Synthetic Trust: Trust derived from modification of the system. Trust
in the whole derives from how components are combined. Examples:
OS isolation, reference monitors, firewalls

• Analytic Trust: Trust derived from testing and/or reasoning to justify
conclusions about what a component or system will and/or will not do.
Trust in an artifact is justified by trust in some method of analysis.

• Axiomatic Trust: Trust derived from beliefs that we accept on faith.
We might trust some hardware or software, for example, because it is
built or sold by a given company. We are putting our faith in the
company's reputation.

Analytic TrustSynthetic Trust Axiomatic Trust

Testing
• Goal is to expose existence of faults, so that they can be

fixed
• Unit testing: isolated components
• Integration testing: combined components
• System testing: functionality, performance, acceptance

Testing
When do you stop testing?
• Bad answer: when time is up
• Bad answer: what all tests pass
• Better answer: when methodology is complete (code

coverage, paths, boundary cases, etc.)
• Future answer: statistical estimation says Pr[undetected

faults] is low enough (active research)

Testing for security?

Penetration testing
• Experts attempt to attack

• Internal vs. external
• Overt vs. covert

• Typical vulnerabilities exploited:
• Passwords (cracking)
• Buffer overflows
• Bad input validation
• Race conditions / TOCTOU
• Filesystem misconfiguration
• Kernel flaws

Fuzz testing
[Barton Miller, 1989, 2000, 2006]
• Generate random inputs and feed them to programs:

• Crash? hang? terminate normally?
• Of ~90 utilities in '89, crashed about 25-33% in various Unixes
• Crash implies buffer overflow potential

• Since then, "fuzzing" has become a standard practice for
security testing

• Results have been repeated for X-windows system,
Windows NT, Mac OS X
• Results keep getting worse in GUIs but better on command line

Fuzz testing
Testing strategy:
• Purely random no longer so good, just gets low-hanging

fruit
• Better:

• Use grammar to generate inputs
• Or randomly mutate good inputs in small ways

• especially for testing of network protocols
• Research: use analysis of source code to guide mutation of inputs

FindBugs
• Looks for patterns in code that are likely faults and that

are likely to cause failures
• Categorizes and prioritizes bugs for presentation to

developer
• Watch video of Prof. Bill Pugh, developer of FindBugs,

present it to a Google audience:
https://www.youtube.com/watch?v=8eZ8YWVl-2s

Formal Verification
• prove program is correct with respect to some formal

specification
• Examples: seL4, CompCert
• Problems: correctness of specification, scale

Bases for Trust

• Synthetic Trust: Trust derived from modification of the system. Trust
in the whole derives from how components are combined. Examples:
OS isolation, reference monitors, firewalls

• Analytic Trust: Trust derived from testing and/or reasoning to justify
conclusions about what a component or system will and/or will not do.
Trust in an artifact is justified by trust in some method of analysis.

• Axiomatic Trust: Trust derived from beliefs that we accept on faith.
We might trust some hardware or software, for example, because it is
built or sold by a given company. We are putting our faith in the
company's reputation.

Analytic TrustSynthetic Trust Axiomatic Trust

Vulnerabilities by Year

Idea 2: Engineer Countermeasures

Attacks
are perpetrated by

threats
that inflict

harm
by exploiting
vulnerabilities

which are controlled by
countermeasures.

Engineering methodology
1. Threat analysis
2. Functional requirements
3. Harm analysis
4. Security goals
5. Feasibility analysis
6. Security requirements

Threats
A principal that has potential to cause harm to
assets
• Adversary or attacker: a human threat, motivated and

capable
• Sometimes humans aren't malicious: accidents happen
• Sometimes non-humans cause harm: floods,

earthquakes, power outage, hardware failure

Threat Models
• Identify threats of concern to system

• Especially malicious, human threats
• What kinds of attackers will system resist?
• What are their motivations, resources, and capabilities?

• Best if analysis is specific to system and its functionality
• Non threats?

• Trusted hardware
• Trusted environment
• e.g., physically secured machine room reachable only by

trustworthy system operators

Threats
• Inquisitive people, unintentional blunders
• Hackers driven by technical challenges
• Disgruntled employees or customers seeking revenge
• Criminals interested in personal financial gain, stealing services, or

industrial espionage
• Organized crime with the intent of hiding something or financial gain
• Organized terrorist groups attempting to influence policy by isolated

attacks
• Foreign espionage agents seeking to exploit information for

economic, political, or military purposes
• Tactical countermeasures intended to disrupt specific weapons or

command structures
• Multifaceted tactical information warfare applied in a broad

orchestrated manner to disrupt major military missions
• Large organized groups or nation states intent on overthrowing a

government

Threats (DoD)

Threats (DoD)

Threat Model = Capabilities

Threat model: The adversary desires to
prevent baby deliveries. The adversary
has access to radio equipment that
transmits and receives on the same
frequencies that providence uses for
communication with a stork. The
adversary also controls weapons systems
that can destroy a stork in flight.

Threat Model = Capabilities
• privilege levels
• disk access
• memory access
• physical access
• key access
• network access

Threat Model = Capabilities
• privilege levels
• disk access

Threat Model = Capabilities
• privilege levels
• disk access
• memory access

Heartbleed

Heartbleed

Frame Access

Physical
Memory

Page Table

Processor

Frame 0
Frame 1

Frame M

Page # Offset

Virtual
Address

Page # Offset

Virtual
Address

Frame Offset

Physical
Address

Frame Offset

Physical
Address

Memory Management

Speculative Execution
int i1, i2;
boolean b1,b2;
boolean[] a1,a2;

if (i1 < a1.length()) {
boolean bval= a1[i1];
if(bval){i2= 1;} else{i2= 0;}
if(i2 < a2.length()){

b2 = a2[i2];
}

}

Timing

Threat Model = Capabilities
• privilege levels
• disk access
• memory access
• physical access

Stuxnet

Threat Model = Capabilities
• privilege levels
• disk access
• memory access
• physical access
• key access

FileVault

Threat Model = Capabilities
• privilege levels
• disk access
• memory access
• physical access
• key access
• network access

Network Adversaries

Attacker Properties
Membership insider outsider
Method active passive
Adaptability dynamic static
Organization cooperative individual
Scope global extended local
Motivation malicious rational opportunistic

Dyn DDoS

Threat Models

