
CS181S – System Security Fall 2018

Lecture 2: Vulnerabilities

September 10, 2018 Instructor: Eleanor Birrell

1 Traditional Stack Smashing

A buffer overflow occurs when the data written to a buffer is longer than the space
allocated to that buffer. Depending on the location of the allocated buffer and the length
of the overflow, additional data written to a buffer might overwrite other data, code,
or return addresses. In most cases, an accidental buffer overflow will result in incorrect
execution (e.g., when it overwrites other data values), a program crash (e.g., when it
overwrites values the target program doesn’t have permission to access), or no effect
(e.g., when it overwrites values that are not accessed after that point). Malicious buffer
overflows, however, can exploit buffer vulnerabilities to force the system to run exploit
code. The most common form of buffer overflow attack—often called stack smashing—
the attacker overwriting the return address pointer with a pointer to the exploit code.

1.1 Program Stacks

Before we can look at stack smashing in detail, we need to remember some of the details
about how stacks are implemented. When programs are executed, the operating system
stores relevant state in memory. Executable code is stored at one end of memory, static
data is stored next to code, and the stack and the heap occupy the remaining memory.

The heap is used for dynamically allocated memory (ie, any time malloc is used).
The stack is used primarily for managing nested calls to procedures; it also stores local
variables.

B Param 3
B Param 2
B Param 1

Ret Addr Ptr A
Stack Ptr A

B Local Var 1
B Local Var 2

C Param 2
C Param 1

Ret Addr Ptr B
Stack Ptr B

Procedure A

. . .

call B
. . .

Procedure B

. . .

. . .

call C
. . .

Procedure C

. . .

. . .

Figure 1: The stack configuration after nested procedure calls

2-1

When a procedure A calls a procedure B, A pushes a stack frame onto the stack; a
stack frame is comprised of A’s return address (the current value of the program counter),
a pointer to the end of A’s section of the stack (used to recover in case B has an error),
as well as the parameters for B. Local variables created by B (possibly including buffers)
are pushed onto the stack on top of the previous stack frame, and the process iterates
when B calls its own subroutines.

1.2 Stack Smashing Attacks

In most early examples, the malicious code was written earlier in the same buffer, and
the pointer was overwritten to point back to the beginning of the buffer. Note that this
requires careful programming to ensure that the exploit code fits in the available space;
exploit code is often written directly in assembly code to conserve space. An example is
show in Figure 4.

B Param 3
B Param 2
B Param 1

New Ret Addr Ptr
New Stack Ptr
Overflow Buffer
B Local Var 2

Procedure A

. . .

call B
. . .

Procedure B

. . .

. . .

Buffer[20];
. . .

?

Figure 2: Stack configuration after a traditional stack smashing attack.

1.3 Countermeasure: Stack Canaries

Buffer overflows have been a known problem for a long time. The Morris worm leveraged
a buffer overflow vulnerability to spread across the ARPANET in 1988. Consequently,
several differently countermeasures have been developed to defend against such exploits.

In 1998, a researcher named Crispin Cowan observed that this attack pattern could
be leveraged to defend against buffer overflow attacks. His system, called StackGuard,
placed a special value called canary value1 immediately below the return address pointer.
When a procedure returned, the operating system would check the integrity of the canary
value; if it had been modified, the system would signal an error.

Problem solved? Not quite. The canary value needs to be something that the
operating system can efficiently verify. However, if the system uses something simple—
say the constant value 0xf213ea08—then the defense will work (usually) until the attacker

1Canary values are named after the canaries traditionally carried by miners. Canaries need more
oxygen than humans, so if the oxygen level in the mine dropped, the canary would die, notifying the
miners in time for them to safely evacuate.

2-2

learns about the defense.2 After learning about the defense, an attacker will modify the
exploit to bypass the defense by, say, alternating the value of the malicious address
with the canary value. Stackguard employed two alternative methods to prevent an
attacker from successfully forging the stack canary. The first method was a stack canary
comprised of the common termination symbols for C string libraries: \0, CR, LF, and
EOF. An attacker couldn’t use common C library functions to embed these characters
in an overflow buffer because those functions would terminate when they reached their
termination symbol. The second method was 32-bit random number chosen fresh each
time the program was run. Since the canary value is chosen fresh each time the program
is invoked and is never disclosed to anyone, an attacker is unlikely to guess the correct
value to forge. Other types of canaries have also been proposed.

So do stack canaries work? They have low overhead, and they do mitigate buffer
overflow attacks by making such attacks harder to successfully execute. However, a
sufficiently skilled and determined adversary will often be able to bypass a stack canary.

2 Traditional Heap Smashing

In early days, defenders focused their efforts on security stack-based buffer overflows.
Countermeasures like stack canaries focused exclusively on protecting the integrity of
the stack. Overflows that occurred on the heap were assumed not to be exploitable.
However, this assumption turned out to be inaccurate.

2.1 Heaps

Heaps contain dynamically allocated memory (e.g., memory returned by malloc). Ever
memory allocation a program makes is represented by a data structure called a chunk.
A chunk consists of (1) metadata and (2) the memory returned to the program. Chunks
are saved to the heap. The chunk metadata structure contains the following fields:

INTERNAL_SIZE_T prev_size; /* size of prev chunk (if free) */

INTERNAL_SIZE_T size; /* size of chunk */

struct chunk * fd; /* double links -- used only if free */

struct chunk * bw;
size stores the size of the current chunk, in bytes. Since chunks are always 8-byte aligned,
the last three bits are redundant and are actually repurposed; the first (least significant)
bit is used to indicate whether the previous chunk is currently allocated. prev_size

stores the size of the previous chunk, if the previous chunk is currently free.

2Relying on your defensive techniques remaining a secret a system is often called security through
obscurity. It is generally regarded by the security community as ineffective; historically, attackers even-
tually find out how a system is secured, and defenses that rely on the attacker not knowing the defense
strategy have repeatedly been compromised.

2-3

Chunk C (in use)
size C (01001-001)
prev size C (null)

Chunk B (in use)

size B (00110-000)
prev size B (01101)

Chunk A (free)

bk A
fw A

size A (01101-001)
prev size A

Figure 3: Example heap configuration showing one free chunk and two in-use chunks.

Free chunks are stored by size in doubly linked lists using the pointer fields fw and
bk. When a chunk is freed, it checks whether the chunk in front of it is already free (by
checking the least significant bit of its size field). If so, it merges the two chunks and
move the combined chunk to the doubly-linked list for free chunks of the new (combined)
size. If not, it simply adds itself to the doubly-linked list for free chunks of its own size.

Meta-data for in-use chunks does not contain the pointer fields fw and bk; the mem-
ory returned to the program starts where fw was stored prior to allocation.

2.2 Heap Smashing Attacks

The key observation that enables heap smashing attacks is that removing an element
from a doubly-linked list involves overwriting memory locations (supposedly the fw and
bk pointers of the adjacent chunks) with new values (supposedly linking those two chunks
together).

A successful heap smashing attack proceeds by (1) writing a fake fw pointer (pointing
to a targeted function pointer) to the beginning of buffer, (2) writing a fake bk pointer
(pointing at the next memory addresss, soon to contain exploit code) to the second
address of the buffer, (3) writing the exploit code starting from the third address of
the buffer, (4) overwritting prev_size field of the next chunk to contain the size of the
current chunk, and (5) overwriting the sizefield of the next chunk to indicate that the
target chunk is free. When the next chunk is freed, the memory management code will
(incorrectly) observe that the previous chunk is already free and will move the merged
two chunks to the appropriate doubly-linked list of free chunks; the unlinking code will
copy the value of bk (now the location of the exploit code) to the location indicated
by fw (now the target function pointer). When the function pointer is subsequently

2-4

Chunk C (in use)
size C (01001-000)
prev size C (00110)

Exploit code

fake bk B
fake fw B

size B (00110-000)
prev size B (NULL)

fptr

Figure 4: Heap configuration after a buffer overflow attack (before Chunk B is freed).

dereferenced, the exploit code will be run.

2.3 Countermeasure: Memory Tagging

In a tagged architecture, every machine word has one or more bits that encode the
access permissions for that word. These access bits can be set only by priviledged (OS)
instructions. The bits are tested every time the word is accessed. Attempts to access a
word without appropriate permissions result in an error. Access bits can also distinguish
types of access (read, write, execute) or classes of data (numeric, character, address, or
pointer).

A tagged architecture could effectively mitigate buffer overflow attacks by designat-
ing return address pointers as privileged words and/or as pointer words. However, tagged
architectures are not generally compatible with legacy code. And most current operating
systems (including Windows, Mac OS and most Linux flavors) include legacy code dating
back twenty years or more. Tagged architectures have been deployed in some systems
(page-level tagging is also now available on most processors), and more are under de-
velopment by major vendors like Intel, but the lack of code compatibility has precluded
widespread use.

A software analog of hardware tagging is Write or Execute only (W ⊕ X) pages,
sometimes called executable space protection. Under this approach memory is tagged in
software—at the granularity of a page—as either writable or executable, but not both.
Executable space protection is widely deployed; it has shipped with Windows since XP
SP2, with OX X since Leopard (10.5), and is available on most Linux flavors. When
this defense is enabled, an attacker will be unable to execute code written to writable
pages (e.g., code written inside the overflowed buffer) thereby nullifying traditional buffer
overflow attacks targeting either the heap or the stack. However, some applications
(e.g., Javascript, Flash) rely on an executable stack. Also, sophisticated attackers can
sometimes trigger a memory mapping routine that marks the attack code as executable,
bypassing executable space protections.

2-5

3 Code-reuse Attacks

Code-reuse attacks are a class of advanced stack smashing techniques that bypasses the
protection offered by executable space protection. At a high level, instead of altering the
return address pointer to point to code that has just been written on the stack, code-
reuse attacks overwrite the pointer to point to code that already resides on the target
system, either functions in the target program or functions in loaded libraries.

Code-reuse attacks work by overwriting the return address pointer to point to the
location of the appropriate code in memory, overwriting the stack addresses beyond the
new return address pointer with a fake stack frame for the new function, and overwriting
the stack pointer to point to the beginning of the fake stack frame. Complex exploits can
be constructed by chaining together available functions. An example code-reuse attack
is depicted in Figure 7.

3.1 Return-into-libc

\sh\0"
"\bin

String Ptr

Fake Ret Addr Ptr
Fake Stack Ptr

New Ret Addr Ptr
New Stack Ptr

OverFlow Buffer
B Local Var 2

Procedure A

. . .

call B
. . .

Procedure B

. . .

. . .

Buffer[20];
. . .exec

. . .

. . .

?

Figure 5: Stack configuration after a return-into-libc attack.

A common class of code-reuse attacks—known as return-into-libc attacks—targets
code in the standard c library. For example, in the example shown in Figure 7, the
attacker executes the function exec("/bin/sh"). This approach is powerful because
libc includes the system call API and because it is loaded into every Unix program. In
fact, the functions in libc form a Turing complete programming language.

3.2 Countermeasure: Address-Space Layout Randomization

The key observation behind address-space layout randomization (ASLR) is that many
buffer overflow attacks rely on knowing the location in memory of the exploit code the
attacker wishes to use. ASLR renders this difficult by randomizing the memory layout:
the base addresses of the stack, heap, code, and memory mapped segments are random-

2-6

ized at load and link time. This ensures that hardcoded addresses are unlikely to point
to the desired code when the attack targets a particular system.

This approach was initially highly-effective against many forms of buffer overflow
attacks, although attacks that rely exclusively on relative addresses continued to be
effective. ASLR was widely deployed in both Linux and OpenBSD. Derandomization
techniques (Windows Vista, for example, only used 8 heap and 14 stack bits of random-
ness) have since eroded the effectiveness of ASLR on 32-bit machines. Derandomization
attacks on 64 bit machines take several minutes and are thus often detectable, but can
still be successfully executed in some contexts.

3.3 Countermeasure: Language Support

High level languages are compiled into machine code before they are executed. During
this phase, the compiler has the option to introduce additional checks. For example, when
presented with an array access, the compiler could introduce bounds checks, logically
replacing loop (a) with loop (b):

int a[20];

for(int i=0; i<max; i++){

a[i]=0;

}

int a[20];

for(int i=0;i<max;i++){

if(i<0) signal error;

if(i>=20) signal error;

a[i]=0;

}

(a) Loop without bounds checks (b) Loop with bound checks

Compilers can also execute type checks, ensuring that the data assigned to a location has
the appropriate type for that location

Language support effectively eliminates vulnerabilities like buffer overflows. How-
ever, much legacy code was written in lower level languages without such checks, so
vulnerabilities remain. Introducing such checks also imposes a performance cost, so pro-
grammers continue to write code—and produce vulnerabilities—in non-safe languages.

4 Return-oriented programming

Like return-into-libc attacks, return-oriented programming works by gaining control of
the control flow of a program and causing it to execute a sequence of carefully selected
program segments that implement the desired exploit functionality. Unlike in the attacks
we’ve looked at earlier, however, the code segments used in return-oriented programming
are not complete functions. Instead, return-oriented programming constructs exploits
from short code segments or gadgets that are usually just two or three instructions long.

2-7

4.1 Gadgets

Recall that the x86 architecture uses variable-length instructions, and that these instruc-
tions are not necessarily word-aligned. Moreover, the x86 ISA is extremely dense, so
a random byte string will often be interpreted as a valid sequence of instructions. By
starting at a different location, it is therefore possible to interpret the same sequence of
bytes in multiple different ways.

Consider, the following example, drawn from one implementation of the standard
libc library. The two instructions that appear at the entrypoint ecb_crypt are encoded
as follows:

f7 c7 07 00 00 00 test $0x00000007, %edi
0f 95 45 c3 setnzb -61(%ebp)

Starting one byte later, the sequence is instead interpreted as:
c7 07 00 00 00 0f movl $0x0f0000000, (%edi)
95 xchg %ebp, %eax
45 inc %ebp
c3 ret

In its simplest form, any sequence of bytes that ends in c3 could potentially be useful to
an attacker. In any substantial piece of code (e.g., in libc), it is therefore likely that an
attacker can find a sequence of gadgets that will implement the desired exploit.

The set of possibly-useful gadgets in a particular binary can be efficiently discov-
ered through static analysis. Briefly, the analysis constructs a prefix tree by recursively
searching the binary backwards from bytes that can be interpreted as a ret instruction;
if a sequence of bytes can be interpreted as a valid instruction, it is added to the prefix
tree. One analysis of an implementation of the libc library yielded a prefix tree with
15,121 nodes; the set of gadgets discovered formed a Turing complete language.

...

0xbad00001

...
pop %edx
ret

%esp

...

...
0xbad00002

movl 64(%eax), %eax
ret

pop %eax
ret

+64
ret

%esp

(c) Load constant gadget (d) Load from memory gadget

Figure 6: Example gadgets for loading values

4.2 Programming with Gadgets

All gadgets expect to be entered the same way: the processor executes a ret instruction
when the stack point points to the bottom of the gadget. Since all gadgets end with
a ret instruction, gadgets can be strung together by placing one on top of another on

2-8

\sh\0"
"\bin

word to zero

0x0b0b0b0b

lcall %gs:0x10(,0)
ret

pop %ecx
pop %edx
ret

pop %ebx
ret

add %ch, %al
retmovl %eax, 24(%edx)

ret

pop %ecx
pop %edx
ret

xor %eax, %eax
ret

+24

%esp

Figure 7: Return oriented shellcode.

the stack; the first gadget is placed so that its bottom word overwrites a return address
pointer, trigger the exploit.

Lets consider a simple example gadget: loading a constant value into a register can
be accomplished simply by the sequence pop %edx; ret. This example is given in Figure
1a: the ret instruction that enters the gadget will cause the gadget’s address to be poped
off the stack and the gadget to execute; the pop instruction in the gadget will cause the
constant value 0xbad0001 to be popped off the stack and stored in the register %edx,
then the ret instruction will cause the processor to proceed.

In the case of the load from memory gadget (shown in Figure 1b), the value loaded
from memory into a register (now register%eax) is instead the memory location 64 bytes
lower than the location of the value the attacker wants to load from memory. When the
first (load constant) gadget returns, it will return into the second gadget, which will copy
the value offset from %eax by 64 bytes (0xbad00002) into the register %eax and then
return into the next gadget.

The gadgets for loading values are relatively simple, but gadgets for storing values,
implementing arithmetic, and implementing control flow (e.g., conditional jumps) can be
constructed in a similar manner from a sequence of smaller gadgets.

A successful return-oriented programming attack is implemented by overwriting the
stack with the locations of a series of gadgets. The first gadget overwrites the return
address pointer of the target frame stack; when the target function returns, it will trigger

2-9

the sequence of gadgets that implement the exploit code. An example exploit that opens
a shell is shown in Figure 2.

In the example exploit invokes the execve system call to open a shell. This is
achieved by (1) setting the system call index in register %eax to 0x0b by first setting it
to zero (word 1) and then updating the last byte (word 6), (2) setting the path-to-run
in register %ebx to the string “\bin\sh” using the pop instruction in word 7, (3) setting
the argument vector argv in register %ecx to an array of two pointers—the first of which
points to “\bin\sh” and the second of which is null—by using the pop instruction in
word 9 after setting the second pointer to null (zero) in word 5, and (4) setting the
environment vector envp stored in register %edx to a length-one array—containing a
single null pointer—using the second pop instruction in word 9, again after setting the
same pointer to null in word 5. Finally, the shellcode traps to the kernel in word 12.

5 Control Flow Integrity

Control Flow Integrity is a general approach to mitigating all control flow hijacking
attacks, including both return-to-libc attacks and return-oriented programming. The
key observation is that programs have an intended control flow–that is, the programmer
intended for the program to execute one of a few particular sequences of code. For
example, a programmer who writes a loop is intending to allow the code to run through
the loop some number of times; the programmer is not intending the code to jump from
one iteration of the loop to a function that a shell. If the set of intended patterns can be
concisely defined ahead of time, then all control jumps can be checked against intended
behavior and control flow hijacking attempts can be detected.

5.1 Control Flow Graphs

Control flow integrity is implemented by constructing a control flow graph for the pro-
gram. A control-flow graph is a directed graph in which each node corresponds to a
straight-line code segment without any jumps. There edges represent intended jumps in
the control flow. Example control flow graphs for standard programming constructs are
given in Figure 3.

The control flow graph for a program can be defined by statically analyzing a program
binary, by execution profiling, or by construction at compile time.

5.2 Enforcing Control Flow Integrity

At a high level, control flow integrity enforces that when ever an instruction transfers
control (e.g., calls a sub-procedure or returns from a function), it must target a valid
destination in the CFG. In most cases, the control-transfer instruction targets a constant
destination, so the validity check can be added statically by modifying the program

2-10

start

start start

(a) If-then-else statement (b) A while loop (c) A loop with two exits

Figure 8: Example control flow graphs

binary. In other cases, the valid destination is determined at runtime (and thus the
validity must be checked) at runtime.

The effectiveness of a control flow integrity enforcement mechanism depends on the
precision of the control graph. However, large graphs tend to impose unacceptable per-
formance overheads. Existing implementations of control flow integrity must choose a
balance between these two competing constraints. The original CFI system, for example,
assumes that if the control flow graph contains edges to two destinations from a common
source, then the destinations are equivalent. This assumption optimizes performance
overhead, but it is not always true; unintended control flow jumps may be permitted
due to this approximation. In fact, practical code-reuse attacks have been demonstrated
against this approximate implementation of control flow integrity.

Control Flow Guard. First introduced in Windows 8.1, Control Flow Guard is per-
haps the most broadly deployed implementation of control flow integrity on the market
today. When Control Flow Guard is enabled by the compiler, it injects target address
checks before every indirect call during program compilation. These checks trigger a
function called ntdll!LdrpValidateUserCallTarget—located at a particular location defined
by the compiler—which implements the target address check.

Control Flow Guard implements control flow integrity by storing a bitmap of valid
function start addresses, at the granularity of 8 bytes. A jump into a function (e.g.,
returning control flow to the return address pointer on the stack) is only permitted if the
location is a valid function start location in the bitmap. Control Flow Guard implements
an approximation of full control flow integrity—by allowing jumps to any permitted func-
tion start point and by considering locations at 8 byte granularity—in order to reduce the
overhead of full precision CFI. However, this imprecision has permitted some successful
attacks to bypass this defensive measure.

In a particularly memorable example of defensive failures, the initial version of Con-

2-11

trol Flow Guard was quickly discovered to have a severe vulnerability: the location of
the guard function was written in read-only memory, however, attackers discovered they
were able to make the read-only memory writable and then overwrite the address check
function with a trivial function that accepts all addresses. They were then able to suc-
cessfully implement a standard control flow hijacking attack targeting a vulnerable buffer
despite the defense. This vulnerability was quickly patched, and it is unknown whether
or to what extent additional vulnerabilities introduced by the approximate nature of
Control Flow Guard remain exploitable.

2-12

