
CS105 – Computer Systems Spring 2023

Week 7: Optimization
March 6-8, 2023

1. Optimization. You have just joined a new startup that is trying to develop the world’s fastest factorial
routine. Starting with recursive factorial, they converted to the code to use iteration:

int fact(int n){

int i;

int result = 1;

for (i=n; i > 0; i--){

result = result * i;

}

return result;

}

By doing so, they have reduced the number of cycles per element (CPE) for the function from around
63 to around 4 (really!). Still, they would like to do better.

(a) One of the programmers heard about loop unrolling. He generated the following code:

int fact_u2(int n){

int i;

int result = 1;

for (i = n; i > 0; i-=2){

result = (result *i) * (i-1);

}

return result;

}

Is this a valid optimization that a compiler might perform? If so, justify why the two functions
are equivalent. If not, state which values of n will return different values and show how to fix it.

7-1



(b) You modify the line inside the loop to read: result = result * (i * (i-1)); To every-
one’s astonishment, the measured performance now has a CPE of 2.5. How do you explain this
improved performance?

(c) Name two further changes might you make to try to further improve the performance of your
factorial function.

(d) Show how to modify the code to improve the performance using the techniques identified in
Part1c.

7-2



2. Optimization with Caches.

After graduation, you start working for a company that wants to make Post-Its by printing yellow
squares on white pieces of paper. As part of the printing process, they need to set the CMYK (cyan,
magenta, yellow, black) value for every point in the square. They ask you to determine the efficiency
of the following algorithms on a machine with a 2048-byte direct-mapped data cache with 32 byte
blocks.

You are given the following definitions:

struct point_color {

int c;

int m;

int y;

int k;

};

struct point_color square[16][16];

register int i, j;

Assume:

• sizeof(int) = 4

• square begins at memory address 0

• The cache is initially empty.

• The only memory accesses are to the entries of the array square. Variables i and j are stored
in registers.

(a) What percentage of the writes in the following code will miss in the cache?

for (i=0; i<16; i++){

for (j=0; j<16; j++) {

square[i][j].c = 0;

square[i][j].m = 0;

square[i][j].y = 1;

square[i][j].k = 0;

}

}

Miss rate for writes to square: _______ %

7-3



(b) What percentage of the writes in the following code will miss in the cache?

for (i=0; i<16; i++){

for (j=0; j<16; j++) {

square[j][i].c = 0;

square[j][i].m = 0;

square[j][i].y = 1;

square[j][i].k = 0;

}

}

Miss rate for writes to square: _______ %

(c) What percentage of the writes in the following code will miss in the cache?

for (i=0; i<16; i++){

for (j=0; j<16; j++) {

square[i][j].y = 1;

}

}

for (i=0; i<16; i++) {

for (j=0; j<16; j++) {

square[i][j].c = 0;

square[i][j].m = 0;

square[i][j].k = 0;

}

}

Miss rate for writes to square: _______ %

(d) Which implementation would you recommend they use?

7-4


