Week 6: Caches

SOLUTION

February 27 - March 1, 2023

1. **Direct-Mapped Caches.** The following table depicts a direct-mapped cache, with an 8 byte block size and 4 cache lines:

	Direct-Mapped Cache														
Index	Tag	Valid		Data											
0	29	0	34 29 8E 00 39 AE AE												
1	73	1	0D	8F	AA	E9	0C	3C	EA	01					
2	A7	1	88	4B	E2	04	D2	13	B0	05					
3	3B	1	AC	99	FF	1F	B5	47	0D	00					

You should assume:

- Memory is byte addressable. All memory accesses read/write 1-byte.
- Memory addresses are 12 bits.
- (a) The box below depicts a 12-bit memory address. Indicate (by labeling the diagram) the fields that would be used to determine (1) the tag, (2) the index, and (3) the offset.

	11	10	9	8	7	6	5	4	3	2	1	0
Į												

CT: [11-5] CI: [4-3] CO: [2-0]

(b) Consider the following sequence of accesses (yes, they occur sequentially). For each access, determine the tag, index, and offset. Then indicate whether that access would correspond to a cache hit or a cache miss, and what byte is read (if the exact value is unknown because it is not shown in the initial cache diagram, use the notation MEM[addr] instead of giving the byte).

	Operation	Tag	Index	Offset	Hit?	Byte read
i.	Read 0xAB8	0x55	3	0	Miss	Mem[OxAB8]
ii.	Read 0xE68	0x73	1	0	Hit	0x0D
iii.	Read 0x524	0x29	0	4	Miss	Mem[0x524]
iv.	Read 0xE6C	0x73	1	4	Hit	0x0C
v.	Read 0x526	0x29	0	4	Hit	Mem[0x526]
vi.	Read 0x528	0x29	1	0	Miss	Mem[0x528]

2. **Set-Associative Caches.** The following table depicts a 4-way set associate cache, with a 2 byte block size and 32 total lines:

	4-way Set Associative Cache															
Index	Tag	Valid	Da	ata	Tag	Valid	Data		Tag	Valid	Data		Tag	Valid	Da	ata
0	029	0	34	29	787	0	39	AE	C7D	1	68	F2	88B	1	64	38
1	AF3	1	0D	8F	C3D	1	0C	3A	D4A	1	A4	DB	6D9	1	A5	3C
2	2A7	1	E2	04	FAB	1	D2	04	BE3	0	3C	A4	D01	1	EE	05
3	23B	0	AC	1F	1E0	0	B5	70	B3B	1	66	95	E37	1	49	F3
4	780	1	60	35	02B	0	19	57	549	1	8D	0E	100	0	70	AB
5	EEA	1	В4	17	0CC	1	67	DB	08A	0	DE	AA	118	1	2C	D3
6	11C	0	3F	A4	D01	0	3A	C1	9F0	0	20	13	E7F	1	DF	05
7	D0F	0	00	FF	2AF	1	B1	5F	099	0	AC	96	C3A	1	22	79

You should assume:

- Memory is byte addressable, and all memory accesses read/write 1 byte.
- Memory addresses are 16 bits.
- The cache uses a least-recently used (LRU) eviction policy.
- The cache is write-back, write-allocate.
- No writes occur prior to the beginning of this problem.
- (a) The box below depicts a 16-bit memory address. Indicate (by labeling the diagram) the fields that would be used to determine (1) the tag, (2) the index, and (3) the offset.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

CT: [15-4] CI: [3-1] CO: [0]

(b) Consider the following sequence of accesses (yes, they occur sequentially). For each access, indicate whether that access would correspond to a cache hit or a cache miss, which byte is read (for reads), and whether or not a memory write will occur. Use the notation MEM[addr] for reads are cache misses.

	Operation	Tag	Index	Offset	Hit?	Byte read	Mem write?
i.	Write \$0x01, 0x0CCB	0x0CC	5	1	Hit	n/a	N
ii.	Read OxEEAA	OxEEA	5	0	Hit	B4	N
iii.	Read 0x118B	0x118	5	1	Н	D3	N
iv.	Write \$0x02, 0x047B	0x047	5	1	Miss	n/a	N
v.	Read 0x119B	0x119	5	1	Miss	Mem[0x119B]	Y
vi.	Read 0x047A	0x047	5	0	Hit	Mem[0x047A]	N