CS105 - Computer Systems

Week 3: Signed Integers and Floats SOLUTION

January 30-February 1, 2023

1. Consider a 5-bit two's complement representation. Fill in the empty boxes in the following table. Addition and subtraction should be performed based on the rules for 5-bit, two's complement arithmetic

Number	Decimal Representation	Binary Representation
n / a	9	01001
n / a	-14	10010
n / a	12	01100
n / a	-12	10100
TMax	15	01111
TMin	-16	10000
TMin+TMin	0	00000
TMin+1	-15	10001
TMax+1	-16	10000
-TMax	-15	10001
-TMin	-16	10000

2. The following procedure takes a single-precision floating point number in IEEE format and prints out information about what category of number it is. Fill in the missing code so that it performs this classification correctly.
```
void classify_float(float f){
    /* Unsigned value u has same binary representation as f */
    unsigned u = *(unsigned *) &f;
    /* Split u into the different parts */
    unsigned sign = (u >> 31); // The sign bit
    unsigned exp = (u >> 23) & 0xFF; // The exponent field
    unsigned frac = u & 0x7FFFFF; // The fraction field
    /* The remaining expressions can be written in terms of the
    values of sign, exp, and frac */
    if (exp == 0 && frac == 0){
        printf("Plus or minus zeron");
    } else if (exp == 0){
        printf("Nonzero, denormalized\n");
    } else if (exp == 0xFF && frac == 0){
        printf("Plus or minus infinity\n");
    } else if (exp == 0xFF){
        printf("NaN\n");
    } else if (exp < 127){
        printf("Greater than -1.0 and less than 1.0\n");
    } else if (sign == 1){
        printf("Less than or equal to -1.0\n");
    } else
        printf("Greater than or equal to 1.0\n");
    }
}
```

