Lecture 26: TCP

CS 105

Spring 2023

OSI Network Model

Application	HTTP, FTP, DNS (<i>these</i> ^ are usually in libraries)		app app					
Transport	TCP, UDP		OS CPU memory bus controller physical transmission					
Network	IP, ICMP (ping)							
Link	Ethernet, WiFi							
Physical	wires, signal encoding							
(Hard to draw firm lines here)								

Transport Layer Protocols

User Datagram Protocol (UDP)

- unreliable, unordered delivery
- connectionless
- best-effort, segments might be lost, delivered out-oforder, duplicated
- reliability (if required) is the responsibility of the app

Transmission Control Protocol (TCP)

reliable, in-order delivery

- connection setup
- flow control
- congestion control

Sockets Interface: socket

• Clients and servers use the socket function to create a socket descriptor:

int socket(int domain, int type, int protocol)

• Example:

Protocol specific! Best practice is to use getaddrinfo to generate the parameters automatically, so that code is protocol independent.

Sockets Interface: bind

• A server uses bind to ask the kernel to associate the server's socket address with a socket descriptor:

int bind(int sockfd, SA *addr, socklen_t addrlen);

- The process can read bytes that arrive on the connection whose endpoint is addr by reading from descriptor sockfd.
- Similarly, writes to sockfd are transferred along connection whose endpoint is addr.

Best practice is to use getaddrinfo to supply the arguments addr and addrlen.

Sockets Interface: listen

- By default, kernel assumes that descriptor from socket function is an active socket that will be on the client end of a connection.
- A server calls the listen function to tell the kernel that a descriptor will be used by a server rather than a client:

int listen(int sockfd, int backlog);

- Converts sockfd from an active socket to a listening socket that can accept connection requests from clients.
- backlog is a hint about the number of outstanding connection requests that the kernel should queue up before starting to refuse requests.

Sockets Interface: accept

 Servers wait for connection requests from clients by calling accept:

int accept(int listenfd, SA *addr, int *addrlen);

- Waits for connection request to arrive on the connection bound to listenfd, then fills in client's socket address in addr and size of the socket address in addrlen.
- Returns a connected descriptor that can be used to communicate with the client via Unix I/O routines.

Connected vs. Listening Descriptors

- Listening descriptor
 - End point for client connection requests
 - Created once and exists for lifetime of the server
- Connected descriptor
 - End point of the connection between client and server
 - A new descriptor is created each time the server accepts a connection request from a client
 - Exists only as long as it takes to service client
- Why the distinction?
 - Allows for concurrent servers that can communicate over many client connections simultaneously
 - E.g., Each time we receive a new request, we fork a child to handle the request

Sockets Interface: connect

 A client establishes a connection with a server by calling connect:

int connect(int clientfd, SA *addr, socklen_t addrlen);

- Attempts to establish a connection with server at socket address addr
 - If successful, then clientfd is now ready for reading and writing.
 - Resulting connection is characterized by socket pair

(x:y, addr.sin_addr:addr.sin_port)

- x is client address
- y is ephemeral port that uniquely identifies client process on client host

Best practice is to use getaddrinfo to supply the arguments addr and addrlen.

accept Illustrated

1. Server blocks in accept,
waiting for connection request
on listening descriptor
listenfd

2. Client makes connection request by calling and blocking in *connect*

3. Server returns connfd from accept. Client returns from connect. Connection is now established between clientfd and connfd

TCP Connections

- TCP is connectionoriented
- A connection is initiated with a threeway handshake
- Recall: server will typically create a new socket to handle the new connection

Exercise: Connection Setup

 Consider the network operations we've discussed thus far: socket, bind, listen, accept, connect. What sequence are these operations called in if a client wants to send one message to the server?

client

server

Communicating over a channel

 Consider the network operations we've discussed thus far: socket, bind, listen, accept, connect. What sequence are these operations called in if a client wants to send one message to the server?

client

server

Reliable Transport

- Each SYN segment will include a randomly chosen sequence number
- Sequence number of each segment is incremented by data length
- Receiver sends ACK segments acknowledging latest sequence number received
- Sender maintains copy of all sent but unacknowledged segments; resends if ACK does not arrive within timeout
- Timeout is dynamically adjusted to account for round-trip delay

Transport-Layer Segment Formats

UDP			ТСР			
	Source Port #	Dest. Port #		Source Port #	Dest. Port #	
				sequence number		
application message (payload)			acknowledgement number			
				HL UAPRSF	receive window	
				checksum	U data pointer	
				options		
				application message (payload)		

Pipelined Protocols

- Pipelining allows sender to send multiple "in-flight", yet-tobe-acknowledged packets
 - increases throughput
 - needs buffering at sender and receiver

Example: Window Size = 4

- sender can have up to 4 unacknowledged messages
- when ACK for first message is received, it can send another message

Pipelined Protocols

- Pipelining allows sender to send multiple "in-flight", yet-tobe-acknowledged packets
 - increases throughput
 - needs buffering at sender and receiver
- what should we do if a packet goes missing in the middle?

TCP Fast Retransmit

- Receiver always acks the last id it successfully received
- Sender detects loss without waiting for timeout, resends missing packet

Exercise: TCP Sequence Numbers

Consider the sequence of transmitted messages shown on the right

- What will be the next ACK number sent by the server?
- What will be the next Seq number sent by the client?

Pipelined Protocols

- Pipelining allows sender to send multiple "in-flight", yet-tobe-acknowledged packets
 - increases throughput
 - needs buffering at sender and receiver
- what should we do if a packet goes missing in the middle?
- how big should the window be?

TCP Congestion Control

- TCP operates under a principle of additive increasemultiplicative decrease
 - window size++ every RTT if no packets lost
 - window size/2 if a packet is dropped

TCP Fairness

 Goal: if k TCP sessions share same bottleneck link of bandwidth R, each should have average rate of R/k

Loss: decreases throughput proportional to current bandwidth

Congestion avoidance: increases throughput linearly (evenly)

TCP Slow Start

- Problem: linear increase takes a long time to build up a decent window size, and most transactions are small
- Solution: allow window size to increase exponentially until first loss

Exercise: TCP Window Size

- Assume someone changes the code of their TCP client by modifying the congestion avoidance as follows: instead of increasing the window size by 1 each time an ACK is received, they double the window size each time an ACK is received (like in the slow-start phase).
- What would be the pros and cons of this modification?

TCP Connections

- TCP is connectionoriented
- A connection is initiated with a three-way handshake
- Recall: server will typically create a new socket to handle the new connection
- FIN works (mostly) like SYN but to teardown a connection

TCP Summary

- Reliable, in-order message delivery
- Connection-oriented, three-way handshake
- Transmission window for better throughput
 - timeouts based on link parameters (e.g., RTT, variance)
- Congestion control
 - Linear increase, exponential backoff
- Fast adaptation
 - Exponential increase in the initial phase