Lecture 24: File Systems

CS 105 Spring 2023

Review: File Systems 101

- Long-term information storage goals
- should be able to store large amounts of information
- information must survive processes, power failures, etc.
- processes must be able to find information
- needs to support concurrent accesses by multiple processes

- Solution: the File System Abstraction
- interface that provides operations involving
- files
- directories (a special kind of file)

Review: The File System Abstraction

- interface that provides operations on data stored long-term on
disk

- a file is a named sequence of stored bytes
- name is defined on creation
- processes use name to subsequently access that file

- a file is comprised of two parts:

- data: information a user or application puts in a file
- an array of untyped bytes

- metadata: information added and managed by the OS
- e.g., size, owner, security info, modification time

- two types of files
- normal files: data is an arbitrary sequence of bytes

- directories: a special type of file that provides mappings from human-
readable names to low-level names (i.e., file numbers)

———
Review: The File System Stack

[

>

Application =

&

Language Libraries (e.g.,fopen, fread, fwrite, fclose,...) =
————— POSIX API (open, read, write, close, ...) -—-—--

File System)

5

S

Generic Block Interface (block read/write) 5

-

Generic Block Layer <

Specific Block Interface (protocol-specific read/write)

Device Driver

————
File System Challenges

- Performance: despite limitations of disks

- Flexibility: need to support diverse file types and
workloads

- Persistence: store data long term

- Reliability: resilient to OS crashes and hardware failures

————
File System Properties

- Most files are small
- need strong support for small files (optimize the common case)
- block size can't be too big

- Directories are typically small
- usually 20 or fewer entries

- Some files are very large
- must handle large files
- large file access should be reasonably efficient

- File systems are usually about half full

Implementation Basics

- Directories: file name -> low-level names (i.e., file numbers)

Multiple human-readable names

- Many file systems allow a given file to have multiple
names

- Hard links are multiple file directory entries that map
different path names to the same file number

- Symbolic Links or soft links are directory entries that map
one name to another (effectively a redirect)

Directories

- a directory is a file that provides mappings from human-
readable names to low-level names (i.e., file numbers):
- a list of human-readable names
- a mapping from each name to a specific underlying file or directory

- OS uses path name to find directories and files
) S——
File2 | bin 737
“I” | usr 924
home 158 h—
P——— i [ada 682
D File 158 | eleanor 818
"lhome" | rett 830 |-
.. File 818 | music 320
"/home/eleanor" | wWork 219 -
foo.txt 871 .. | The autew
5 brown fox
D File 871 | over the
"/home/eleanor/foo.txt" lazy dog.

Implementation Basics

- Directories: file name -> low-level names (i.e., file numbers)

- Index structures: file number -> block(s)

———
Storing Files

Possible ways to allocate files:

- Continuous allocation: all bytes together, in order

- Linked structure: each block points to the next block

- Indexed structure: index block points to many other blocks

- Log structure: sequence of segments, each containing updates

Continuous Allocation

All bytes together, in order

+ Simple: state required per file = start block & size
+ Efficient: entire file can be read with one seek

- Fragmentation: external is bigger problem

- Usability: user needs to know size of file at time of
creation

filel file2 file3 file4 file5S

Linked Allocation

Each file is stored as linked list of blocks: First word of each
block points to next block, rest of disk block is file data

+ Simple: only need to store 1st block of each file

+ Space Utilization: no space lost to external
fragmentation
- Performance: random access is slow

- Space Utilization: overhead of pointers
File A

Physical
Block

Linked Allocation: File Allocation Table (FAT)

- Developed by Microsoft for MS-DOS

- Still used in some contexts (e.g., flash drives)

- Fat-32 supports 228 blocks and files of 234 — 1 bytes
- File table:

- Linear map of all blocks on disk
- Each file a linked list of blocks

32 bit entries

FAT Data Blocks
FAT File System ¢
g W File 12
2| 0
o 1 entry per bIOCk j O‘ File 9 Block 3
- EOF for last block 5 8
6
- 0 indicates free block 7| o |
8| 0 |
- low-level name = FAT o = - | |__File 9 Blocko
index of first block in "% == i1 [ile 8 Block
file 11 F|Ie 9 B|OCk2
=il
eleanor.txt 12 17 |[EQF | File 9 Block 4
18 0
19 0
20 Q

AR N

. a)
FAT Directory Structure e a9
Folder: a file with 32-byte entries work 219
Each Entry: foo.txt 871

- 8 byte name + 3 byte extension (ASCII)
- creation date and time

- last modification date and time

- first block in the file (index into FAT)

- size of the file

Exercise 1: Linked Allocation

- How many disk reads would be required to read (all of) a
21> byte file named /foo/bar/baz.txt
- assume 4096 byte (4 KB or 212 byte) blocks
- assume that all directories are small enough to fit in one block

———
Evaluating FAT

How is FAT good?

- Simple: state required per file: start block only
- Widely supported

- No external fragmentation

- block used only for data

How is FAT bad?

-« Poor locality

- Many file seeks (unless entire FAT in memory)
- Poor random access

- Limited metadata

- Limited access control

- Limitations on volume and file size

- No support for reliability techniques

Indexed Allocation: Fast File System (FFS)

- tree-based, multi-level index

- superblock identifies file system's key parameters
- inodes store metadata and pointers
- datablocks store data

blocknumber 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I |

super 1-node Remaining blocks
block blocks

e —————
FFS Superblock

- Identifies file system’s key parameters:
- type
- block size

- inode array location and size
- location of free list

blocknumber 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I |

super 1-node Remaining blocks
block blocks

Inode Ar

FFS inodes

- Inode blocks contain an array
of inodes

- each inode contains:
- Metadata

 info about which blocks store
file

block number 0 1 3 4 5 6 7
blocks:

I I
superblock 1-node blocks Remaining blocks

File

Metadata

references
to file
blocks

Inode Metadata

- Type
- ordinary file
- directory
- symbolic link
- special device

- Size of the file (in #bytes)

- # links to the i-node

- Owner (user id and group id)
- Protection bits

- Times: creation, last accessed, last
modified

File
Metadata

references
to file
blocks

e —
FFS Index Structures

Inode Array Triple Double
Indirect Indirect Indirect Data
Inode Blocks Blocks Blocks Blocks

File Metadata

Direct Pointer f-- i :
DP

DP
DP
DP
DP
DP > D)D >
DP

DP P
Direct Pointer . ' ferececresosesesene)D >

Indirect Pointer reeeeeeeeeeeeeeess fod
H :'""'""’"'""') ssssccscccsccccsccccccccce) D TP T TS 3
Dbl. Indirect Ptr. N D -------- : D -------- .

[Tripl. Indirect Ptr, |- o[et e — R >

e —
FFS Index Structures

Inode Array Triple Double
Indirect Indirect Indirect Data
Inode Blocks Blocks Blocks Blocks
File Metadata 12 . 212 bytes directly '
P reachable from inode
T I e — B
DP : 210 212 bytes indirectIyD ________ , _
= . reachabie from inode &= '
= 1220212 bEes doubly indirect
o T — |
DP
DP
Diroct poimter |-t | R [— |
“ |Indirect Pointer - (S T oy WSSO) I———
1 Dbl INGITEC PRr, Jereeeereeeerseerecc R N
%, Tripl. Indirect Ptr, wreeeeeseee I = v I — >
Assume: blocks are 4KB (212 byt@s)......o ... 5 :
block references are 4 bytes S | — ,

Exercise 2: Inode Structures

Assume we are using the inode structure we just described,
and assume again that each block is 4K (212?) and that each
block reference is 4 bytes.

- Which pointers in the inode of a 32KB file would be non-null?

- Which pointers in the inode of a 47MB file would be non-null?

Exercise 2: Inode Structures

Assume we are using the inode structure we just described,
and assume again that each block is 4K (212?) and that each
block reference is 4 bytes.

- Which pointers in the inode of a 32KB file would be non-null?

- Which pointers in the inode of a 47MB file would be non-null?

————
FFS Directory Structure

- Originally: array of 16 byte entries
- 14 byte file name
- 2 byte i-node number

- Now: implicit list. Each entry contains:
- 4-byte inode number
- Full record length
- Length of filename

- Filename
- First entry is “.”, points to self

- Second entry is “..”, points to parent inode

(1L

Exercise 3: Indexed Allocation

Which inodes and data blocks would need to be accessed to
read (all of) file /foo/bar/baz?

2 31 40 73

194 301 302 912 913

———
Key Characteristics of FFS

- Tree Structure
- efficiently find any block of a file
- High Degree (or fan out)
- minimizes number of seeks
- supports sequential reads & writes
- Fixed Structure
- implementation simplicity
- Asymmetric

- not all data blocks are at the same level
- supports large files
- small files don’t pay large overheads

Implementation Basics

- Directories: file name -> low-level names (i.e., file numbers)
- Index structures: file number -> block

- Free space maps: find a free block (ideally nearby)

Free List

To write files, need to keep track of which blocks are

currently free
How to maintain?

- linked list of free blocks
- inefficient (why?)

- linked list of metadata blocks that in turn point to free

blocks
- simple and efficient

- bitmap

- actually used

—

—

/

/\

/
/;
(/

/ 1\

Problem: Poor Performance

- In a naive implementation of FFS, performance starts bad
and gets worse

- One early implementation delivered only 2% disk
bandwidth

- The root of the problem: poor locality
- data blocks of a file were often far from its inode

- file system would end up highly fragmented: accessing a logically
continuous file would require going back and forth across the

Implementation Basics

- Directories: file name -> low-level names (i.e., file numbers)
- Index structures: file number -> block
- Free space maps: find a free block (ideally nearby)

- Performance optimizations (e.g., locality heuristics)

Performance Optimizations

- Grouped Allocation: disk organized into groups that are
(temporally) close, try to allocate all file blocks in same group

- Defragmentation: periodically rearrange files to improve locality

- Page Cache: to reduce costs of accessing files, cache file
contents in memory (e.g., device data, memory-mapped files)

- Copy-on-write (COW): create new, updated copy at time of
update

- Write Buffering: buffer writes and periodically flush to disk

