
CS 105 Spring 2023

Lecture 20: Synchronization



Review: Problems with Locks

• Problem 1: Correct Synchronization with Locks is Hard

• Problem 2: Locks are Slow
• threads that fail to acquire a lock on the first attempt must "spin", 

which wastes CPU cycles
• replace no-op with yield()

• threads get scheduled and de-scheduled while the lock is still 
locked
• need a better synchronization primitive



Blocking Lock (aka mutex)
• Initial state of lock is 0 ("available")

• acquire(&lock)
• block (suspend thread) until value n > 0
• when n > 0, decrement n by one 

• release(&lock)
• increment value n by 1
• resume a thread waiting on s (if any)

acquire(&lock){
while(lock->s == 1){
;

}
lock->s == 0

}

release(&lock){
lock->s == 0

}



Review: Example with Locks
/* Global shared variable */
volatile long cnt = 0; /* Counter */
pthread_mutex_t lock = 

PTHREAD_MUTEX_INITIALIZER;

int main(int argc, char **argv){
long niters;
pthread_t tid1, tid2;

niters = atoi(argv[1]);
pthread_create(&tid1, NULL,

thread, &niters);
pthread_create(&tid2, NULL,

thread, &niters);
pthread_join(tid1, NULL);
pthread_join(tid2, NULL);

/* Check result */
if (cnt != (2 * niters))
printf("BOOM! cnt=%ld\n", cnt);

else
printf("OK cnt=%ld\n", cnt);

exit(0);
}

/* Thread routine */
void* thread(void* vargp){                                                                                                                

long i;
long niters = *((long*)vargp);                                                                           

for (i = 0; i < niters; i++){
acquire(&lock);
cnt++; 
release(&lock);

}               

return NULL;                                                                                                 
} 



Example: Bounded Buffers

finite capacity (e.g. 20 loaves)
implemented as a queue

Threads A: produce loaves of bread and put 
them in the queue

Threads B: consume loaves by taking them off 
the queue



Example: Bounded Buffers

Threads A: produce loaves of bread and put 
them in the queue

Threads B: consume loaves by taking them off 
the queue

Separation of concerns:
1. How do you implement a bounded buffer?
2. How do you synchronize concurrent access to a 
bounded buffer?

finite capacity (e.g. 20 loaves)
implemented as a queue



3

typedef struct {
int *b;       // ptr to buffer containing the queue
int n; // length of array (max # slots) 
int count;    // number of elements in array
int front; // index of first element, 0 <= front < n
int rear;     // (index of last elem)+1 % n, 0 <= rear < n

} bbuf_t

Example: Bounded Buffers
0      1       2       3      4       5     (n = 6)

2 4 1 Values wrap around!!b

frontrear

void init(bbuf_t * ptr, int n){
ptr->b = malloc(n*sizeof(int));
ptr->n = n;
ptr->count = 0;
ptr->front = 0;
ptr->rear = 0;

}

void put(bbuf_t * ptr, int val){
ptr->b[ptr->rear]= val;
ptr->rear= ((ptr->rear)+1)%(ptr->n);
count++;

}
int get(bbuf_t * ptr){
int val= ptr->b[ptr->front];
ptr->front= ((ptr->front)+1)%(ptr->n);
count--;
return val;

}

2

Exercise 1: What can go wrong?



typedef struct {
int *b;       
int n;
int count;
int front; 
int rear;     

} bbuf_t

Example: Bounded Buffers

void init(bbuf_t * ptr, int n){
ptr->b = malloc(n*sizeof(int));
ptr->n = n;
ptr->count = 0;
ptr->front = 0;
ptr->rear = 0;

}

void put(bbuf_t * ptr, int val){

ptr->b[ptr->rear]= val;
ptr->rear= ((ptr->rear)+1)%(ptr->n);
count++;

}
int get(bbuf_t * ptr){

int val= ptr->b[ptr->front];
ptr->front= ((ptr->front)+1)%(ptr->n);
count--;

return val;
}

3 4 1b

frontrear

2

pthread_mutex_t lock;

acquire(&lock)

acquire(&lock)

init(&lock);

release(&lock)

release(&lock)

0      1       2       3      4       5     (n = 6)

while(ptr->count==ptr->n){
release(&lock)
acquire(&lock)

}

while(ptr->count==0){
release(&lock)
acquire(&lock)

}



Condition Variables
• A condition variable cv is a stateless synchronization 

primitive that is used in combination with locks (mutexes) 
• condition variables allow threads to efficiently wait for a change to 

the shared state protected by the lock
• a condition variable is comprised of a waitlist

• Interface:
• wait(CV * cv, Lock * lock): Atomically releases the lock, suspends 

execution of the calling thread, and places that thread on cv's
waitlist; after the thread is awoken, it re-acquires the lock before 
wait returns

• signal(CV * cv): takes one thread off of cv's waitlist and marks it as 
eligible to run. (No-op if waitlist is empty.)



typedef struct {
int *b;       
int n;
int count;
int front; 
int rear;     

} bbuf_t

Example: Bounded Buffers

void init(bbuf_t * ptr, int n){
ptr->b = malloc(n*sizeof(int));
ptr->n = n;
ptr->count = 0;
ptr->front = 0;
ptr->rear = 0;

}

void put(bbuf_t * ptr, int val){

ptr->b[ptr->rear]= val;
ptr->rear= ((ptr->rear)+1)%(ptr->n);
count++;

}

int get(bbuf_t * ptr){

int val= ptr->b[ptr->front];
ptr->front= ((ptr->front)+1)%(ptr->n);
count--;

return val;
}

3 4 1b

frontrear

2

pthread_mutex_t lock;

acquire(&lock)

acquire(&lock)

init(&lock);

release(&lock)

release(&lock)

0      1       2       3      4       5     (n = 6)

if(ptr->count == 0)
wait(&bread_added)

signal(&bread_bought)

if(ptr->count == ptr->n)
wait(&bread_bought)

signal(&bread_added)

CV bread_bought;

init(&bread_bought);

while(ptr->count == ptr->n)
wait(&bread_bought)

while(ptr->count == 0)
wait(&bread_added)

CV bread_added;

init(&bread_added);



Using Condition Variables
1. Declare a lock. Each shared value needs a lock to 

enforce mutually exclusive access to the shared value.
2. Add code to acquire and release the lock. All code 

access the shared value must hold the objects lock.
3. Identify and declare condition variables. A good rule of 

thumb is to add a condition variable for each situation in 
a function must wait for.

4. Add loops are your waits. Threads might not be 
scheduled immediately after they are eligible to run. 
Even if a condition was true when signal/broadcast was 
called, it might not be true when a thread resumes 
execution.



Exercise: Synchronization Barrier
• With data parallel programming, 

a computation proceeds in 
parallel, with each thread 
operating on a different section 
of the data. Once all threads 
have completed, they can 
safely use each others results.

/* Thread routine */
void *thread(void *args)                                                                                        
{                                                                                                                

parallel_computation(args)

done_count++;

use_results();

} 

int done_count = 0;
Lock lock;

acquire(&lock);

release(&lock);

CV all_done;

if(done_count < n){
wait(&all_done, &lock);

} else {

}

for(int i=0;i<n;i++)
signal(&all_done);

/* Thread routine */
void *thread(void *args)                                                                                        
{                                                                                                                

parallel_computation(args)

done_count++;

use_results();

} 

What can go wrong?



Condition Variables
• A condition variable cv is a stateless synchronization 

primitive that is used in combination with locks (mutexes) 
• condition variables allow threads to efficiently wait for a change to 

the shared state protected by the lock
• a condition variable is comprised of a waitlist

• Interface:
• wait(CV * cv, Lock * lock): Atomically releases the lock, suspends 

execution of the calling thread, and places that thread on cv's
waitlist; after the thread is awoken, it re-acquires the lock before 
wait returns

• signal(CV * cv): takes one thread off of cv's waitlist and marks it as 
eligible to run. (No-op if waitlist is empty.)

• broadcast(CV * cv): takes all threads off cv's waitlist and marks 
them as eligible to run. (No-op if waitlist is empty.)



Exercise: Readers/Writers
• Consider a collection of concurrent threads that have access to a shared 

object
• Some threads are readers, some threads are writers

• a unlimited number of readers can access the object at same time
• a writer must have exclusive access to the object

int reader(void *shared){

num_readers++;    

int x =  read(shared);

num_readers--;

return x
}

void writer(void *shared, int val){

num_writers=1;

write(shared, val);

num_writers=0;

}

int num_readers = 0;
int num_writers = 0;
Lock lock;

acquire(&lock);

release(&lock);

acquire(&lock);

release(&lock);

CV readable;
CV writeable;

while(num_writers > 0)
wait(readable, &lock);

if(num_readers == 0)
signal(writeable);

acquire(&lock);

release(&lock);

while(num_readers > 0)
wait(writeable, &lock);

signal(writeable);

int reader(void *shared){

num_readers++;    

int x =  read(shared);

num_readers--;

return x
}

int num_readers = 0;
int num_writers = 0;

broadcast(readable);

void writer(void *shared, int val){

num_writers=1;

write(shared, val);

num_writers=0;

}



Programming with CVs
C

• Initialization:
pthread_mutex_t lock = 

PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cv = 

PTHREAD_COND_INITIALIZER;

• Lock acquire/release:
pthread_mutex_lock(&lock);
pthread_mutex_unlock(&lock);

• CV operations:
pthread_cond_wait(&cv, &lock);
pthread_cond_signal(&cv);
pthread_cond_broadcast(&cv);

Python

• Initialization:
lock = Lock()
cv = Condition(lock)

• Lock acquire/release:
lock.acquire()
lock.release()

• V
cv.wait()
cv.notify()
cv.notify_all()


