Lecture 20: Synchronization

CS 105 Spring 2023

Review: Problems with Locks

- Problem 1: Correct Synchronization with Locks is Hard

- Problem 2: Locks are Slow
- threads that fail to acquire a lock on the first attempt must "spin",
which wastes CPU cycles
- replace no-op with yield()
- threads get scheduled and de-scheduled while the lock is still
locked
- need a better synchronization primitive

Blocking Lock (aka mutex)

- Initial state of lock is 0 ("available")

- acquire(&lock)
- block (suspend thread) until value n >0
- when n > 0, decrement n by one

- release(&lock)
- increment value n by 1
- resume a thread waiting on s (if any)

acquire(&lock){
while(lock->s

1){

release(&lock){
lock->s ==

}

Review: Example with Locks

/* Global shared wvariable */

pthread mutex t lock =
PTHREAD MUTEX INITIALIZER;

int main(int argc, char **argv) {
long niters;
pthread t tidl, tid2;

niters = atoi(argv|[1l]);
pthread create(&tidl, NULL,
thread, &niters);
pthread create(&tid2, NULL,
thread, &niters);
pthread join(tidl, NULL) ;
pthread join(tid2, NULL) ;

/* Check result */
if (cnt !'= (2 * niters))

else
printf ("OK cnt=%1d\n", cnt);
exit (0) ;

volatile long cnt = 0; /* Counter */

/* Thread routine */
void* thread(void* wvargp) {
long 1i;
long niters = *((long¥*)vargp) ;

for (i = 0; i < niters; i++) {
acquire (&lock) ;
cnt++;
release (&lock) ;

return NULL;

printf ("BOOM! cnt=%1d\n", cnt);

Example: Bounded Buffers

; .finit'é cac"i't (e.g. 20 Toaes)
implemented as a queue

Threads A: produce loaves of bread and put Threads B: consume loaves by taking them off
them in the queue the queue

Example: Bounded Buffers

1
e R e
- - i —

[e o T S S o -3 _ s SRR
finite capacity (e.g. 20 loaves)
implemented as a queue

Separation of concerns:
1. How do you implement a bounded buffer?

2. How do you synchronize concurrent access to a
bounded buffer?

s i

Threads A: produce loaves of bread and put Threads B: consume loaves by taking them off
them in the queue the queue

Example Bounded Buffers

0 2 3 4 5 (n=6)
b |3 24| 1 Values wrap around!!
' ¥
rear front
typedef struct {
int *b; // ptr to buffer containing the queue
int n; // length of array (max # slots)
int count; // number of elements in array
int front; // index of first element, 0 <= front < n
int rear; // (index of last elem)+l % n, © <= rear < n
} bbuf_t void put(bbuf_t * ptr, int val){
ptr->b[ptr->rear]= val;
ptr->rear= ((ptr->rear)+1)%(ptr- >n),
void init(bbuf_t * ptr, int n){ count++;

ptr->b = malloc(n*sizeof(int)); }

ptr->n = n;

ptr->count = 0;

ptr->front = 0;

ptr->rear = 0;
}

——;AL‘ int get(bbuf t * ptr){

int val= ptr->b[ptr->front]; y
ptr->front= ((ptr- >front)+1)/(ptr >n),
count--;

Exer(:lse 1: What can go wrong?

Example: Bounded Buffers
0 1" 2 3 4 5 (n=6)

b

typedef
int
int
int
int
int

pthread mutex_t loc

void put(bbuf_t * ptr, int val){_\'
3|2 4] 1 acquire(&lock) -
struct { 4 4 while(ptr->cou ->n)A{
*b; rear release

n;
count;
front;

rear; r->rear)+1)%(ptr->n);

} bbuf t * ptr){
void init(bbuf t * pt
ptr->b = malloc 0){
ptr->n = n;
ptr->count =
ptr->front = }
ptr->rear = 0; int val= ptr->b[ptr->front];
init(&lock); ptr->front= ((ptr->front)+1)%(ptr->n);
count--;
release(&lock)

return val;

Condition Variables

- A condition variable cv is a stateless synchronization
primitive that is used in combination with locks (mutexes)

- condition variables allow threads to efficiently wait for a change to
the shared state protected by the lock

- a condition variable is comprised of a waitlist

- Interface:

- wait(CV * cv, Lock * lock): Atomically releases the lock, suspends
execution of the calling thread, and places that thread on cv's
waitlist; after the thread is awoken, it re-acquires the lock before
wait returns

- signal(CV * cv): takes one thread off of cv's waitlist and marks it as
eligible to run. (No-op if walitlist is empty.)

Example: Bounded Buffers
0 1" 2 3 4 5 (n=6)

void put(bbuf t * ptr, int val){~\l.

b| 3|2 411

typedef struct { 4)
int *b; rear front
int n;
int count;
int front;
int rear;
pthread mutex t lock;
CV bread_bought;

CV bread_added;
} bbuf t

void init(bbuf_t * ptr, int n){g T
malloc(n*sizeof(int));

ptr->b
ptr->n = n;

ptr->count = 0;
ptr->front = 0;
ptr->rear = 0;
init(&lock);
init(&bread bought);
init(&bread added);

int get(bbuf t * ptr){

acauire(&lock)

while(ptr->count == ptr->n)
wait(&bread bought)

ptr->b[ptr->rear]= val;

ptr->rear= ((ptr->rear)+1)%(ptr->n);

count++;

signal(&bread _added)

} release(&lock)

acauire(&lock)

while(ptr->count == 0)
wait(&bread added)

int val= ptr->b[ptr->front];

ptr->front= ((ptr->front)+1)%(ptr->n);

count--;

signal(&bread bought)

release(&lock)
return val;

Using Condition Variables

1.

2.

Declare a lock. Each shared value needs a lock to
enforce mutually exclusive access to the shared value.

Add code to acquire and release the lock. All code
access the shared value must hold the objects lock.

|dentify and declare condition variables. A good rule of
thumb is to add a condition variable for each situation in
a function must wait for.

Add loops are your waits. Threads might not be
scheduled immediately after they are eligible to run.
Even if a condition was true when signal/broadcast was
called, it might not be true when a thread resumes
execution.

Exercise: Synchronization Barrier

- With data parallel programming,
a computation proceeds in
parallel, with each thread
operating on a different section
of the data. Once all threads
have completed, they can
safely use each others results.

What can go wrong?

int done count = 0;
Lock lock;

CV all done;

/* Thread routine */
void *thread(void *args)
{

parallel computation (args)

done count++;

use results() ;

Condition Variables

- A condition variable cv is a stateless synchronization
primitive that is used in combination with locks (mutexes)

- condition variables allow threads to efficiently wait for a change to
the shared state protected by the lock

- a condition variable is comprised of a waitlist

- Interface:

- wait(CV * cv, Lock * lock): Atomically releases the lock, suspends
execution of the calling thread, and places that thread on cv's
waitlist; after the thread is awoken, it re-acquires the lock before
wait returns

- signal(CV * cv): takes one thread off of cv's waitlist and marks it as
eligible to run. (No-op if walitlist is empty.)

- broadcast(CV * cv): takes all threads off cv's waitlist and marks
them as eligible to run. (No-op if waitlist is empty.)

Exercise: Readers/\Writers

- Consider a collection of concurrent threads that have access to a shared
object
- Some threads are readers, some threads are writers
- a unlimited number of readers can access the object at same time
- a writer must have exclusive access to the object

int num_readers 0;
int num_writers 0;

int reader(void *sh void writer(void *shared, int val)({

num_readers++;
num_writers=1;
int x = read(shared);
write(shared, val);
num_readers--;
num_writers=0;

return x

Programming with CVs

C Python
- Initialization: - Initialization:
pthread mutex t lock = lock = Lock()
PTHREAD MUTEX INITIALIZER; cv = Condition(lock)

pthread cond t cv =
PTHREAD COND INITIALIZER;

- Lock acquire/release: - Lock acquire/release:
pthread mutex lock (&lock); lock.acquire()
pthread mutex unlock(&lock); lock.release()

- CV operations: .V
pthread cond wait(&cv, &lock); cv.wait()
pthread cond signal (&cv); cv.notify()

pthread cond broadcast (&cv) ; cv.notify all()

