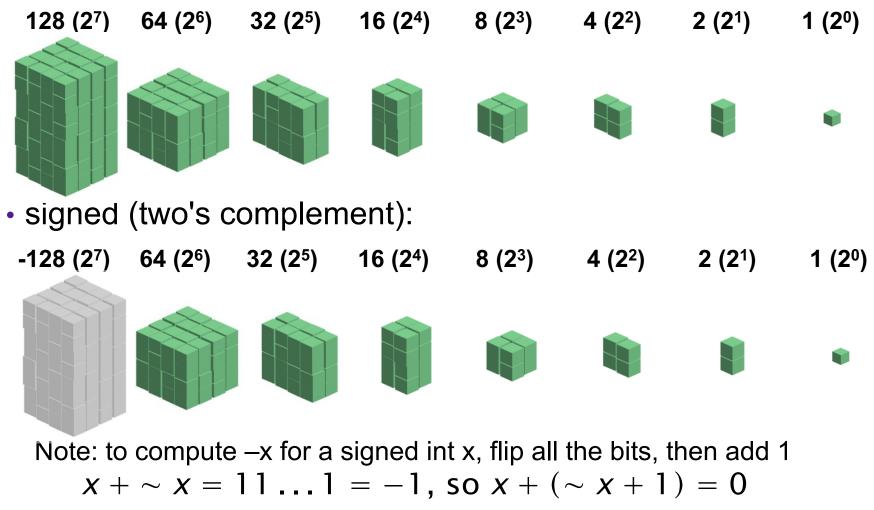
Lecture 4: Floats

CS 105

Review: Representing Integers

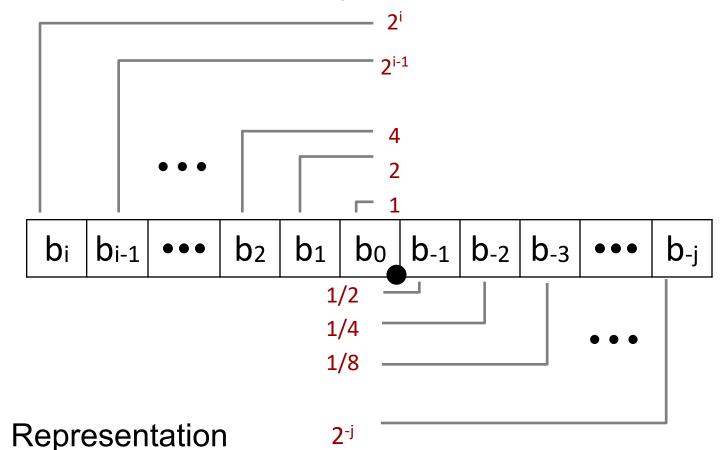
• unsigned:



Fractional binary numbers

• What is 1001.101₂?

Fractional binary numbers



- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-j}^{i} (b_k \cdot 2^k)$

٠

Example: Fractional Binary Numbers What is 1001.101₂?

$$= 8 + 1 + \frac{1}{2} + \frac{1}{8} = 9 \frac{5}{8} = 9.625$$

• What is the binary representation of 13 9/16?

1101.1001

Exercise 1: Fractional Binary Numbers

- Translate the following fractional numbers to their binary representation
 - 53/4
 - 27/8
 - 17/16
- Translate the following fractional binary numbers to their decimal representation
 - .011
 - .11
 - 1.1

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations
 - Value Representation
 - 1/3 0.0101010101[01]...2
 - 1/5 0.001100110011[0011]...2
 - 1/10 0.0001100110011[0011]...2
- Limitation #2
 - Just one setting of binary point within the *w* bits
 - Limited range of numbers (very small values? very large?)

Floating Point Representation

- Numerical Form: $(-1)^{s} \cdot M \cdot 2^{E}$
 - Sign bit *s* determines whether number is negative or positive
 - Significand *M* normally a fractional value in range [1.0,2.0)
 - Exponent *E* weights value by power of two
- Examples:
 - 1.0
 - 1.25
 - 64
 - -.625

Exercise 2: Floating Point Numbers

- For each of the following numbers, specify a binary fractional number M in [1.0,2.0) and a binary number E such that the number is equal to $M \cdot 2^E$
 - 53/4
 - 27/8
 - 1 1/2
 - 3/4

Floating Point Representation

- Numerical Form: $(-1)^{s} \cdot M \cdot 2^{E}$
 - Sign bit s determines whether number is negative or positive
 - Significand M normally a fractional value in range [1.0,2.0)
 - Exponent *E* weights value by power of two
- Encoding:

 $frac = f_{n-1} \dots f_1 f_0$ $\exp = e_{k-1} \dots e_1 e_0$ S s is sign bit s Float (32 bits): k = 8, n = 23 • exp field encodes *E* (but is not equal to E) bias = 127• normally $E = e_{k-1} \dots e_1 e_0 - (2^{k-1} - 1)$ bias Double (64 bits) frac field encodes M (but is not equal to M) • k=11, n = 52 bias = 1023

• normally
$$M = 1. f_{n-1} \dots f_1 f_0$$

Exercise 3: Floating Point Representations

• What are the values of s, exp, and frac that correspond to the float representation of 5 3/4, assuming 1-bit s, 3-bit exp, and 4-bit frac? s exp = $e_{k-1} \dots e_1 e_0$ frac = $f_{n-1} \dots f_1 f_0$

•
$$(-1)^{s} \cdot M \cdot 2^{E}$$
, M = 1.0111, E = 2

- s is sign bit s
- exp field encodes E (but is not equal to E)
 - normally $E = e_{k-1} \dots e_1 e_0 (2^{k-1} 1)$
- frac field encodes M (but is not equal to M)
 - normally $M = 1. f_{n-1} ... f_1 f_0$
- Under those assumptions, what is the full representation of 5 3/4 as a one-byte floating point value? Assume bigendian order.

Example: Floats

 What fractional number is represented by the bytes 0x3ec00000? Assume big-endian order.

s $\exp = e_{k-1} \dots e_1 e_0$ frac $= f_{n-1} \dots f_1 f_0$

- S is sign bit s
- exp field encodes *E* (but is not equal to E)
 - normally $E = e_{k-1} \dots e_1 e_0 (2^{k-1} 1)$
- frac field encodes M (but is not equal to M)
 - normally $M = 1. f_{n-1} ... f_1 f_0$

$$(-1)^s \cdot M \cdot 2^E$$

0011 1110 1100 0000 0000 0000 0000 0000

Exercise 4: Floats

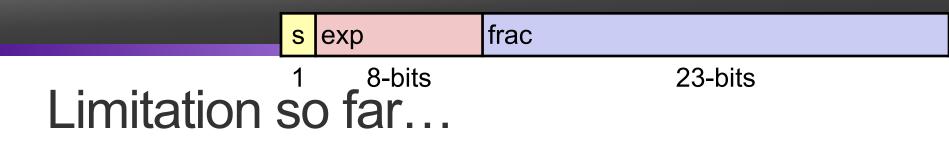
 What fractional number is represented by the bytes 0x423c0000? Assume big-endian order.

s $\exp = e_{k-1} \dots e_1 e_0$ $\operatorname{frac} = f_{n-1} \dots f_1 f_0$

- S is sign bit s
- exp field encodes E (but is not equal to E)
 - normally $E = e_{k-1} \dots e_1 e_0 (2^{k-1} 1)$
- frac field encodes M (but is not equal to M)
 - normally $M = 1. f_{n-1} ... f_1 f_0$

Float (32 bits): • k = 8, n = 23 • bias = 127

 $(-1)^s \cdot M \cdot 2^E$



 What is the smallest non-negative number that can be represented?

0000 0000 0000 0000 0000 0000 0000 0000

 $(-1)^0 \cdot 1.0_2 \cdot 2^{-127} = 2^{-127}$

Normalized and Denormalized

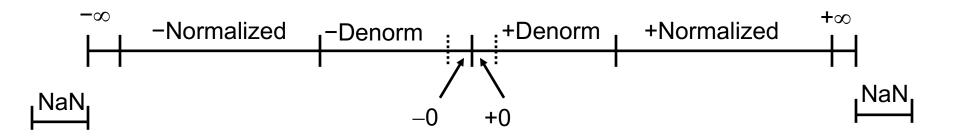
S	ехр	frac
---	-----	------

$$(-1)^s \cdot M \cdot 2^E$$

Normalized Values

- exp is neither all zeros nor all ones (normal case)
- exponent is defined as $E = e_{k-1} \dots e_1 e_0$ bias, where bias = $2^{k-1} 1$ (e.g., 127 for float or 1023 for double)
- significand is defined as $M = 1. f_{n-1} f_{n-2} \dots f_0$
- Denormalized Values
 - exp is either all zeros or all ones
 - if all zeros: E = 1 bias and $M = 0. f_{n-1}f_{n-2} ... f_0$
 - if all ones: infinity (if frac is all zeros) or NaN (if frac is non-zero)

Visualization: Floating Point Encodings



frac

23-bits

Example: Limits of Floats

 What is the difference between the largest (non-infinite) positive number that can be represented as a (normalized) float and the second-largest?

23-bits

Example: Limits of Floats

 What is the difference between the largest (non-infinite) positive number that can be represented as a (normalized) float and the second-largest?

0111 1111 0111 1111 1111 1111 1111 1111

largest =
$$1.111111111111111111111_2 \cdot 2^{127}$$

second_largest = $1.11111111111111111111_{0_2} \cdot 2^{127}$

diff = $0.0000000000000000000000001_2 \cdot 2^{127} = 1_2 \cdot 2^{127-23} = 2^{104}$

Correctness

- Example 1: Is (x + y) + z = x + (y + z)?
 - Ints: Yes!
 - Floats:
 - $(2^{30} + -2^{30}) + 3.14 \rightarrow 3.14$
 - $2^{30} + (-2^{30} + 3.14) \rightarrow 0.0$

Floating Point in C

- C Guarantees Two Levels
 - float single precision (32 bits)
 - double double precision (64 bits)
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - $\bullet \texttt{double/float} \to \texttt{int}$
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - $\bullet \texttt{int} \to \texttt{double}$
 - Exact conversion,
 - int \rightarrow float
 - Will round

Example: Casting with Floats

Assume you have three variables: an int x, a float f, and a double d. Assume that all three variables store numeric values (not +∞, -∞, or NaN). Which of the following expressions are guaranteed to evaluate to True?

1.
$$x == (int)(double)(x)$$

2.
$$x == (int)(float)(x)$$

Example: Casting with Floats

- Assume you have three variables: an int x, a float f, and a double d. Assume that all three variables store numeric values (not +∞, -∞, or NaN). Which of the following expressions are guaranteed to evaluate to True?
 - 1. x == (int)(double)(x) True
 2. x == (int)(float)(x) False
 3. d == (double)(float) d False
 - 4. f == (float)(double) f True

Floating Point Operations

- All of the bitwise and logical operations still work
- Float arithmetic operations done by separate hardware unit (FPU)