
CS 105

Lecture 3: Representing Signed Integers

Review: Memory
• Memory is an array of bits

• A byte is a unit of eight bits

• An index into the array is an address,
location, or pointer
• Often expressed in hexadecimal

• We speak of the value in memory at
an address
• The value may be a single byte …
• … or a multi-byte quantity starting

at that address
1
0

1
0

0
0

1
1

0
1

1
0

1
1

0
0

0
1

1
1

0
1

0
0

1
1

0
0

1
1

1
0

0

1

2

3

01101100

01010011

11010001

00110111

bytes

Review: Binary Numbers
128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

0 0 0 0 0 1 0 1

0 0 1 0 1 1 1 1

1 1 1 1 1 1 1 1

Representing Signed Integers
• Option 1: sign-magnitude
• One bit for sign; interpret rest as magnitude
• 𝑆𝑖𝑔𝑛𝑒𝑑 𝑥 = −1 !!"# ⋅ ∑"#$%&'𝑥" ⋅ 2"

4

+/- 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

0 0 0 0 0 1 0 1

1 0 0 0 0 1 0 1

-

1 1 1 1 1 1 1 1

Representing Signed Integers
• Option 2: excess-K
• Choose a positive K in the middle of the unsigned range
• 𝑆𝑖𝑔𝑛𝑒𝑑 𝑥 = ∑"#$%&(𝑥" ⋅ 2" − 2%&(

5

128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20) -128

0 0 0 0 0 1 0 1

1 0 0 0 0 1 0 1

1 1 1 1 1 1 1 1

Representing Signed Integers
• Option 3: two’s complement
• Like unsigned, except the high-order contribution is negative
• 𝑆𝑖𝑔𝑛𝑒𝑑 𝑥 = −𝑥%&(⋅ 2%&(+ ∑"#$%&'𝑥" ⋅ 2"

6

-128 (-26) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

0 0 0 0 0 1 0 1

1 0 0 0 0 1 0 1

1 1 1 1 1 1 1 1

Example: Three-bit integers

8
CS 105, Computer Systems Pomona College

Example: Three-bit integers

unsigned signed
111 7
110 6
101 5
100 4
011 3 011
010 2 010
001 1 001
000 0 000

�1 111
�2 110
�3 101
�4 100

• The high-order bit is the sign bit.

• The largest unsigned value is
11 . . . 1, UMax.

• The signed value for �1 is always
11 . . . 1.

• Signed values range between TMin
and TMax.

This representation of signed values is
called two’s complement.

15

Important Signed Numbers

8 16 32 64
TMax 0x7F 0x7FFF 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF

TMin 0x80 0x8000 0x80000000 0x8000000000000000

0 0x00 0x0000 0x00000000 0x0000000000000000

-1 0xFF 0xFFFF 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF

Exercise 1: Signed Integers
Assume an 8 bit (1 byte) signed integer representation:
• What is the binary representation for 47?
• What is the binary representation for -47?
• What is the number represented by 10000110?
• What is the number represented by 00100101?

10

Casting between Numeric Types
• Casting from shorter to longer types preserves the value

• Casting from longer to shorter types drops the high-order
bits

• Casting between signed/unsigned types preserves the
bits (it just changes the interpretation)

• Implicit casting occurs in assignments and parameter
lists. In mixed expressions, signed values are implicitly
cast to unsigned

• Source of many errors!

Exercise 2: Casting
• Assume you have a machine with 6-bit integers/3-bit shorts
• Assume variables: int x = -17; short sy = -3;
• Complete the following table

Expression Decimal Binary
x -17
sy -3

(unsigned int) x
(int) sy

(short) x

When to Use Unsigned

13

• Rarely
• When doing multi-precision arithmetic, or when you need

an extra bit of range … but be careful!

unsigned i;
for (i = cnt-2; i >= 0; i--){

a[i] += a[i+1];
}

Arithmetic Logic Unit (ALU)
• circuit that performs bitwise operations and arithmetic on

integer binary types

Bitwise vs Logical Operations in C
• Bitwise Operators &, |, ~, ^

• View arguments as bit vectors
• operations applied bit-wise in parallel

• Logical Operators &&, ||, !
• View 0 as “False”
• View anything nonzero as “True”
• Always return 0 or 1
• Early termination

• Shift operators <<, >>
• Left shift fills with zeros
• For signed integers, right shift is arithmetic (fills with high-order bit)

15

Exercise 3: Bitwise vs Logical Operations
• Assume signed char data type (one byte)

• ~(-30)
• !(-30)

• -30 & 21
• -30 && 21

• -30 << 2
• -30 >> 2
• 21 >> 2

16

Addition Example
• Compute 5 + -3 assuming all ints are stored as four-bit

signed values

Exactly the same as unsigned numbers!

0 1 0 1
+ 1 1 0 1

0 1 0 0

1

… but with different error cases

= 2 (Base-10)

1

Addition/Subtraction with Overflow
• Compute 5 + 3 assuming all ints are stored as four-bit

signed values

0 1 0 1
+ 0 0 1 1

0 0 0 1

1

= -8 (Base-10)

1 1

Error Cases
• Assume 𝑤-bit signed values

• 𝑥 +!" 𝑦 = %
𝑥 + 𝑦 − 2! (positive over1low)
𝑥 + 𝑦 (normal)
𝑥 + 𝑦 + 2! (negative over1low)

• overflow has occurred iff 𝑥 > 0 and y > 0 and 𝑥 +!" 𝑦 < 0
or 𝑥 < 0 and y < 0 and 𝑥 +!" 𝑦 > 0

0 2!"# 2 ⋅ 2!"#

[)
representable values

()Possible values of 𝑥 + 𝑦

−2!"#−2 ⋅ 2!"#

Exercise 4: Binary Addition
• Given the following 5-bit signed values, compute their

sum and indicate whether or not an overflow occurred

x y x+y overflow?
00010 00101

01100 00100

10100 10001

+ _

Multiplication Example
• Compute 3 x 2 assuming all ints are stored as four-bit

signed values

Exactly like unsigned multiplication!

0 0 1 1
x 0 0 1 0

… except with different error cases

= 6 (Base-10)

0 0 0 0
0 0 1 1 0

0 1 1 0

Multiplication Example
• Compute 5 x 2 assuming all ints are stored as four-bit

signed values
0 1 0 1

x 0 0 1 0

= -6 (Base-10)

0 0 0 0
0 1 0 1 0+ _

1 0 1 0

Error Cases
• Assume 𝑤-bit unsigned values

• 𝑥 ∗() 𝑦 = 𝑈2𝑇(𝑥 ⋅ 𝑦 mod 2()

Possible values of 𝑥 ∗ 𝑦

0 2!"# 2$(!"#)

[)
representable values

[)

−2!"#−2$(!"#)

Exercise 5: Binary Multiplication
• Given the following 3-bit signed values, compute their

product and indicate whether or not an overflow occurred

x y x*y overflow?
100 101

010 011

111 010

