Lecture 2: Representing Integers

CS 105

Review: Abstraction

Review: Memory

- Memory is an array offtito
- A byte is a unit of eight bits
- An index into the array is an address, location, or pointer
- Often expressed in hexadecimal
- We speak of the value in memory at an address
- The value may be a single byte ...
- ... or a multi-byte quantity starting at that address

Review: Bits Require Interpretation

10001100000011001010110000000000
might be interpreted as

- The integer 3,485,745
- A floating point number close to 4.884569×10^{-39}
- The string "105"
- A portion of an image or video
- An address in memory

Representing Integers

- Arabic Numerals: 47
- Roman Numerals: XLVII
- Brahmi Numerals: Hつ

Base-10 Integers

Storing bits

- Static random access memory (SRAM): stores each bit of data in a flip-flop, a circuit with two stable states
- Dynamic Memory (DRAM): stores each bit of data in a capacitor, which stores energy in an electric field (or not)
- Magnetic Disk: regions of the platter are magnetized with either N-S polarity or S-N polarity
- Optical Disk: stores bits as tiny indentations (pits) or not (lands) that reflect light differently
- Flash Disk: electrons are stored in one of two gates separated by oxide layers

Base-2 Integers (aka Binary Numbers)

$$
128\left(2^{7}\right) \quad 64\left(2^{6}\right) \quad 32\left(2^{5}\right) \quad 16\left(2^{4}\right) \quad 8\left(2^{3}\right) \quad 4\left(2^{2}\right) \quad 2\left(2^{1}\right) \quad 1\left(2^{0}\right)
$$

0
0
0
0
0
1
0
1

0
0
1
0
1
1
1
1

1
1
1
1
1
1
1
1

Binary Numbers

- Decimal (Base-10):

$$
\begin{gathered}
1011 \\
=1 \cdot 10^{3}+0 \cdot 10^{2}+1 \cdot 10^{1}+1 \cdot 10^{0} \\
=1011
\end{gathered}
$$

- Binary (Base-2):

$$
1011
$$

$$
\begin{gathered}
=1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0} \\
=11
\end{gathered}
$$

Exercise 1: Binary Numbers

- Consider the following four-bit binary values. What is the (base-10) integer interpretation of these values?

1. 0001
2. 1010
3. 0111
4. 1111

Binary Numbers

> There are 10 types of people in the world:
> Those who understand binary, and those who don't.

Exercise 2: Binary Number Range

- What are the max number and min number that can be represented by a w-bit binary number?

1. $w=3$
2. $w=4$
3. $w=8$

Unsigned Integers in C

C Data Type	Size (bytes)
unsigned char	1
unsigned short	2
unsigned int	4
unsigned long	8

ASCII characters

Char	Dec	Binary	Char	Dec	Bi									
!	33	00100001	1	49	00110001	A	65	01000001	Q	81	01010001	a	97	01
"	34	00100010	2	50	00110010	B	66	01000010	R	82	01010010	b	98	01
\#	35	00100011	3	51	00110011	C	67	01000011	S	83	01010011	c	99	01
\$	36	00100100	4	52	00110100	D	68	01000100	T	84	01010100	d	100	01
\%	37	00100101	5	53	00110101	E	69	01000101	U	85	01010101	e	101	01
\&	38	00100110	6	54	00110110	F	70	01000110	V	86	01010110	f	102	01
'	39	00100111	7	55	00110111	G	71	01000111	W	87	01010111	g	103	0
(40	00101000	8	56	00111000	H	72	01001000	X	88	01011000	h	104	01
)	41	00101001	9	57	00111001	1	73	01001001	Y	89	01011001	i	105	01
*	42	00101010	:	58	00111010	J	74	01001010	Z	90	01011010	j	106	01
+	43	00101011	;	59	00111011	K	75	01001011	[91	01011011	k	107	01
,	44	00101100	<	60	00111100	L	76	01001100	1	92	01011100	1	108	01
-	45	00101101	=	61	00111101	M	77	01001101]	93	01011101	m	109	01
	46	00101110	>	62	00111110	N	78	01001110	\wedge	94	01011110	n	110	01
1	47	00101111	?	63	00111111	0	79	01001111	-	95	01011111	0	111	01
0	48	00110000	@	64	01000000	P	80	01010000		96	01100000	p	112	01

Hexidecimal Numbers

00101100	00110101	00110000	11100001
2 C	35	3	e 1

$0 \times 2 c 3530 e 1$

Dec	Hex
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	a
11	b
12	c
13	d
14	e
15	f

Exercise 3: Hexidecimal Numbers

- Consider the following hexidecimal values. What is the representation of each value in (1) binary and (2) decimal?

1. $0 \times 0 a$
2. 0×11
3. $0 \times 2 f$

Endianness

47 vs 74

BIG ERDIAR - The way pecple alnays broke their egga in the Lilliput land

LITTLE EADLAN - The
way the $k i n g$ then
ordezed the people to break their egge

Endianness

- Big Endian: low-order bits go on the right (47)
- I tend to think in big endian numbers, so examples in class will generally use this representation
- Networks generally use big endian (aka network byte order)
- Little Endian: low-order bits go on the left (74)
- Most modern machines use this representation
- I will try to always be clear about whether I'm using a big endian or little endian representation
- When in doubt, ask!

Arithmetic Logic Unit (ALU)

- circuit that performs bitwise operations and arithmetic on integer binary types

Bitwise vs Logical Operations in C

- Bitwise Operators \&, I, ~, ^
- View arguments as bit vectors
- operations applied bit-wise in parallel
- Logical Operators \&\&, ||, !
- View 0 as "False"
- View anything nonzero as "True"
- Always return 0 or 1
- Early termination
- Shift operators <<, >>
- Left shift fills with zeros
- For unsigned integers, right shift is logical (fills with zeros)

Exercise 4: Bitwise vs Logical Operations

Assume unsigned char data type (one byte). What do each of the following expressions evaluate to (interpreted as unsigned integers and expressed base-10)?

```
1. ~226
2. !226
3. 120 & 85
4. 120 | 85
5. 120 && 85
6. 120 || 85
7. }81<<
8. }81>> 
```


Example: Using Bitwise Operations

$\cdot x \& 1$ " x is odd"

- $(x+7) \& 0 \times F F F F F F 8$ "round up to a multiple of 8 "
- $x \ll 2$
"multiply by 4"

Addition Example

- Compute $5+6$ assuming all ints are stored as eight-bit (1 byte) unsigned values

$$
\begin{array}{r}
1 \\
00000101 \\
+00000110 \\
\hline 00001011=11(\text { Base-10 })
\end{array}
$$

Like you learned in grade school, only binary!
... and with a finite number of digits

Addition Example with Overflow

- Compute $200+100$ assuming all ints are stored as eightbit (1 byte) unsigned values

$$
\begin{array}{r}
11 \\
11001000 \\
+01100100 \\
\hline 00101100=44(\text { Base-10) }
\end{array}
$$

Like you learned in grade school, only binary!
... and with a finite number of digits

Error Cases

- Assume w-bit unsigned values

$\cdot x+{ }_{w}^{u} y=\left\{\begin{array}{lr}x+y & \text { (normal) } \\ x+y-2^{w} & \text { (overflow) }\end{array}\right.$
- overflow has occurred iff $x+{ }_{w}^{u} y<x$

Exercise 5: Binary Addition

- Given the following 5-bit unsigned values, compute their sum and indicate whether or not an overflow occurred

\mathbf{x}	\mathbf{y}	$\mathbf{x}+\mathbf{y}$	overflow?
00010	00101		
01100	00100		
10100	10001		

Multiplication Example

- Compute 5×6 assuming all ints are stored as eight-bit (1 byte) unsigned values

$$
\begin{array}{r}
00000101 \\
\times 00000110 \\
\hline 00000000 \\
000001010 \\
+0000010100 \\
\hline 00011110
\end{array}
$$

Like you learned in grade school, only binary!
... and with a finite number of digits

Multiplication Example

- Compute 200×3 assuming all ints are stored as eight-bit (1 byte) unsigned values

$$
\begin{array}{r}
11001000 \\
\times 00000011 \\
\hline 11001000 \\
+110010000 \\
\hline 1001011000=88(\text { Base-10) }
\end{array}
$$

Like you learned in grade school, only binary!
... and with a finite number of digits

Error Cases

- Assume w-bit unsigned values

- $x *_{w}^{u} y=(x \cdot y) \bmod 2^{w}$

Exercise 6: Binary Multiplication

- Given the following 3-bit unsigned values, compute their product and indicate whether or not an overflow occurred

\mathbf{x}	\mathbf{y}	$\mathbf{x} \mathbf{y}$	overflow?
100	101		
010	011		
111	010		

Multiplying with Shifts

- Multiplication is slow
- Bit shifting is kind of like multiplication, and is often faster
- x * $8=x \ll 3$
- $x * 10=x \ll 3+x \ll 1$
- Most compilers will automatically replace multiplications with shifts where possible

