
CS 105

Lecture 1: Bits and Binary Operations

Review: Abstraction

Review: C
• compiled, imperative language that provides low-level

access to memory
• low overhead, high performance

• developed at Bell labs in the
1970s

• C (and related languages) still commonly used
today

Review: Pointers
• Pointers are addresses in

memory (i.e., indexes into the
array of bytes)

• Most pointers declare how to
interpret the value at (or
starting at) that address

• Examples:

• Dereferencing pointers:

Pointer Types x86-64

void * 8

int * 8

char * 8

⋮ 8

int myVariable = 47;
int * ptr = &myVariable;
char * ptr2 = (char *) ptr;

int var2 = *ptr
char c = *ptr2; & and * are inverses of one another

Pointer Arithmetic

• Location of ptr+k depends on the type of ptr
• adding 1 to a pointer p adds 1*sizeof(*p) to the

address

• array[k] is the same as *(array+k)

int myVariable = 47;
int * ptr = &myVariable;
ptr += 1;

char * ptr2 = (char *) ptr;
ptr2 += 1;

Exercise: Pointers
What does x evaluate to in each of the following?
1.

2.

3.

4.

5.

20

24

28

32

32

0

47

20
int * ptr = 32;
x = *ptr

y
int y = 47; // assume at 28
x = &y

int * ptr = 20;
x = *(*ptr)

int * ptr = 24;
x = ptr+1

int * ptr = 24;
x = *(ptr+1)

• Heterogeneous records, like objects
• Typical linked list declaration:

• Usage:

• Usage with pointers:

struct cell {
int value;
struct cell *next;

};

Structs

typedef struct cell {
int value;
struct cell *next;

} cell_t;

cell_t c;
c.value = 42;
c.next = NULL;

cell_t *p;
p->value = 42;
p->next = NULL;

p->next is an
abbreviation for
(*p).next

Review: Bytes and Memory
• Memory is an array of bits

• A byte is a unit of eight bits

• An index into the array is an address,
location, or pointer
• Often expressed in hexadecimal

• We speak of the value in memory at
an address
• The value may be a single byte …
• … or a multi-byte quantity starting

at that address
1
0

1
0

0
0

1
1

0
1

1
0

1
1

0
0

0
1

1
1

0
1

0
0

1
1

0
0

1
1

1
0

0

1

2

3

01101100

01010011

11010001

00110111

bytes

Boolean Algebra
• Developed by George Boole in 19th Century
• Algebraic representation of logic---encode “True” as 1 and

“False” as 0

• How does this map to set operations?

And Or

Not Exclusive-Or (Xor)

9

Exercise: Boolean Operations
• Evaluate each of the following expressions

1. 1 | (~1)
2. ~(1 | 1)
3. (~1) & 1
4. ~(1 ^ 1)

General Boolean algebras

• Bitwise operations on bytes

01101001
& 01010101
01000001

01101001
| 01010101
01111101

01101001
^ 01010101
00111100

~ 01010101
1010101001000001 01111101 00111100 10101010

11

Exercise: Bitwise Operations
• Assume: a = 01101100, b = 10101010

• What are the results of evaluating the following Boolean
operations?

• ~a
• ~b
• a & b
• a | b
• a ^ b

Bitwise vs Logical Operations in C
• Bitwise Operators &, |, ~, ^

• View arguments as bit vectors
• operations applied bit-wise in parallel

• Logical Operators &&, ||, !
• View 0 as “False”
• View anything nonzero as “True”
• Always return 0 or 1
• Early termination

13

Exercise: Bitwise vs Logical Operations
• ~01000001
• ~00000000
• ~~01000001

• !01000001
• !00000000
• !!01000001

• 01101001 & 01010101
• 01101001 | 01010101

• 01101001 && 01010101
• 01101001 || 01010101

14

Bit Shifting
• Left Shift: x << y

• Shift bit-vector x left y positions
• Throw away extra bits on left
• Fill with 0’s on right

• Right Shift: x >> y
• Shift bit-vector x right y positions
• Throw away extra bits on right
• Logical shift: Fill with 0’s on left
• Arithmetic shift: Replicate most

significant bit on left

Choice between logical and
arithmetic depends on the
type of data

15

Undefined Behavior if you
shift amount < 0 or ≥ word
size

Example: Bit Shifting
• 01101001 << 4
• 01101001 >>l 2
• 01101001 >>a 4

10010000
00011010
00000110

Exercise : Bit Shifting
• 10101010 << 4
• 10101010 >>l 4
• 10101010 >>a 4

Bits and Bytes Require Interpretation
10001100 00001100 10101100 00000000
might be interpreted as

• The integer 3,485,745
• A floating point number close to 4.884569 x 10-39

• The string “105”
• A portion of an image or video
• An address in memory

Information is Bits + Context

LOGISTICS

Course staff
Prof. Eleanor Birrell
Edmunds 221

Research in security and privacy
OH: M 7-9pm, T 2-4pm

Claire
LeBlanc

Josh
Yum

Pei
Qin

Tonya
Chivandire

Ziang
Xue

The Course in a Nutshell
• Textbooks (Optional)

• Bryant and O’Halloran, Computer Systems: A Programmer’s Perspective,
third edition, Pearson, 2016 (Optional)

• Arpaci-Dusseau and Arpaci-Dusseau. Operating Systems: Three Easy
Pieces (Optional, free online)

• Classes
• Monday and Wednesday, 11am – 12:15pm in Edmunds 101

• Labs
• Wednesdays 7-8:15 in Edmunds 229/219

Mentor Session Schedule (Edmunds 227)
Monday Tuesday Wednesday Thursday Friday Saturday Sunday
4-6pm
7-9pm*

2-4pm*
7-9pm

LAB 7-9pm 1-3pm 2-4pm 3-5pm

Grading
• Assignments
• Introduced during labs, Due Tuesdays at 11:59pm
• Tremendous fun, work in pairs
• must complete them all
• Thirteen late days

• Check-ins
• one-question exams at the start of lab next week
• graded "Got it" / "Not yet"
• Can improve from "Not yet" to "Got it" via one-on-one meeting
• no limit on number of attempts to improve grade
• Extra chance checkpoints

• Grades
• Must successfully complete all the assignments
• Beyond that, grade determined by the number of "Got it" topics

Course website
https://www.cs.pomona.edu/classes/cs105

• All information is on the course website
• All course materials get posted on the course website
• Links from the course page:

• Slack (#cs105-2023sp), for questions and discussion

• Gradescope, for submitting assignments and seeing grades

• Additional resources

http://www.cs.pomona.edu/classes/cs105/2019sp/

