
CS 105

Lecture 0: Introduction to Computer Systems

Abstraction

• Example 1: Is x2 ≥ 0?
• Floats: Yes!

• Ints:
• 40000 * 40000 ➙ 1600000000
• 50000 * 50000 ➙ ??

• Example 2: Is (x + y) + z = x + (y + z)?
• Ints: Yes!
• Floats:
• (2^30 + -2^30) + 3.14 ➙ 3.14
• 2^30 + (-2^30 + 3.14) ➙ ??

Correctness

Performance

• Hierarchical memory organization
• Performance depends on access patterns

• Including how step through multi-dimensional array

void copyji(int src[2048][2048],
int dst[2048][2048]){

int i,j;
for (j = 0; j < 2048; j++){

for (i = 0; i < 2048; i++){
dst[i][j] = src[i][j];

}
}

}

void copyij(int src[2048][2048],
int dst[2048][2048]){

int i,j;
for (i = 0; i < 2048; i++){

for (j = 0; j < 2048; j++){
dst[i][j] = src[i][j];

}
}

}

81.8ms4.3ms

Security

void admin_stuff(int authenticated){
if(authenticated){

// do admin stuff
// should only happen if user is authenticated
printf("The answer is 42\n");

}
}

int dontTryThisAtHome(char * user_input, int size) {
char data[size];
int ret = memcpy(*user_input, data);
return ret;

}

A Computer System

Main
memory

I/O
bridgeBus interface

ALU

Register file

CPU

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Display
Disk

I/O bus Expansion slots for
other devices such
as network adapters

executable
stored on disk

PC

C
• imperative language that provides low-level access to

memory
• low overhead, high performance

• developed at Bell labs in the
1970s

• C (and related languages) still commonly used
today

Variables
• Declaration

• Assignment

• Declaration and assignment

int myVariable;

type name semi-colon

myVariable = 47;

name semi-colonvalue

C Data Type x86-64

char 1

unsigned short 2

unsigned int 4

unsigned long 8

float 4

double 8

short 2

int 4

long 8

int myVariable = 47;

Operations
• Arithmetic Operations: +, -, *, /, %

• Boolean Operators: ==, !=, >, >=, >, >=

• Bitwise Operations: &, |, ^, ~

• Logical Operations: &&, ||, !

int x = 47;
int y = ~x;
y = x & y;

int x = 47;
int y = !x;
y = x && y;

int x = 47;
int y = x + 13;
y = (x * y) % 5;

int x = (13 == 47);

Functions
Declaring a Function Calling a Function

int myFunction(int x, int y){

int z = x – 2*y;
return z * x;

}

int a;

a = myFunction(47, 13);

Exercise
• Define a function add3 that takes three integers as

arguments and returns the sum of those three values

Control Flow
Conditionals While Loops

int x = 13;
int y;
if (x == 47){

y = 1;
} else {

y = 0;
}

int x = 47;

while (x > 0){
x = x – 1;

}

For Loops

int x = 0;
for (int i=0; i < 47; i++){

x = x + i;
}

Do-While Loops

int x = 47;
do {

x = x - 1;
} while (x > 0);

Exercise
• Define a function that takes two integers and returns an

integer. If the second integer argument is greater than (or
equal to) the first, it returns the sum of the integer values
between those two numbers (inclusive). Otherwise it
returns -1.

Main Functions
• By convention, main functions in C take two arguments:

1. int argc
2. char ** argv

• By convention, main functions in C return an int
• 0 if program exited successfully

int main(int argc, char ** argv){
// do stuff

return 0;
}

Aside: Printing

printf("Hello world!\n");

printf("%d is a number\n", 13);

printf("%d is a number greater than %f\n”, 47, 3.14);

Exercise
• Define a main function that computes the sum of the

integers between 13 and 47 and prints that value.

Compilation
• gcc –o hello hello.c

Pre-
processor
(cpp)

hello.i Compiler
(cc1)

hello.s Assembler
(as)

hello.o Linker
(ld)

hellohello.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

printf.o

#include<stdio.h>

int main(int argc,
char ** argv){

printf("Hello
world!\n");

return 0;
}

…
int printf(const char *

restrict,
...)

__attribute__((__format_
_ (__printf__, 1, 2)));
…
int main(int argc,

char ** argv){

printf("Hello
world!\n");

return 0;
}

pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
leaq L_.str(%rip), %rax
movl $0, -4(%rbp)
movl %edi, -8(%rbp)
movq %rsi, -16(%rbp)
movq %rax, %rdi
movb $0, %al
callq _printf
xorl %ecx, %ecx
movl %eax, -20(%rbp)
movl %ecx, %eax
addq $32, %rsp
popq %rbp
retq

55
48 89 e5
48 83 ec 20
48 8d 05 25 00 00 00
c7 45 fc 00 00 00 00
89 7d f8
48 89 75 f0
48 89 c7
b0 00
e8 00 00 00 00
31 c9
89 45 ec
89 c8
48 83 c4 20
5d
c3

compiler output name filename

Running a Program
• ./hello

Bits
• a bit is a binary digit that can have two possible values

• can be physically represented with a two state device

Storing bits
• Static random access memory (SRAM):

stores each bit of data in a flip-flop, a
circuit with two stable states

• Dynamic Memory (DRAM): stores each
bit of data in a capacitor, which stores
energy in an electric field (or not)

• Magnetic Disk: regions of the platter are
magnetized with either N-S polarity or
S-N polarity

• Optical Disk: stores bits as tiny
indentations (pits) or not (lands) that
reflect light differently

• Flash Disk: electrons are stored in one of
two gates separated by oxide layers

Bytes and Memory
• Memory is an array of bits

• A byte is a unit of eight bits

• An index into the array is an address,
location, or pointer
• Often expressed in hexadecimal

• We speak of the value in memory at
an address
• The value may be a single byte …
• … or a multi-byte quantity starting

at that address
1
0

1
0

0
0

1
1

0
1

1
0

1
1

0
0

0
1

1
1

0
1

0
0

1
1

0
0

1
1

1
0

0

1

2

3

01101100

01010011

11010001

00110111

bytes

Arrays
• Contiguous block of memory
• Random access by index
• Indices start at zero

• Declaring an array:

• Accessing an array:

• The array variable stores the address of the first element
in the array

int array1[5]; // array of 10 ints named array1

char array2[47]; // array of 47 chars named array2

int array3[7][4]; // two dimensional array

int x = array1[0];

Strings
• Strings are just arrays of characters
• End of string is denoted by null byte \0

Pointers
• Pointers are addresses in

memory (i.e., indexes into the
array of bytes)

• Most pointers declare how to
interpret the value at (or
starting at) that address

• Examples:

• Dereferencing pointers:

Pointer Types x86-64

void * 8

int * 8

char * 8

⋮ 8

int * ptr = &myVariable;
char * ptr2 = (char *) ptr;

int var2 = *ptr
char c = *ptr2; & and * are inverses of one another

Pointer Arithmetic

• Location of ptr+k depends on the type of ptr
• adding 1 to a pointer p adds 1*sizeof(*p) to the

address

• array[k] is the same as *(array+k)

int * ptr = &myVariable;
ptr += 1;

char * ptr2 = (char *) ptr;
ptr2 += 1;

Strings
• Strings are just arrays of characters
• End of string is denoted by null byte \0

• generally declared as type char *

Exercise
What does x evaluate to in each of the following?
1.

2.

3.

4.

20

24

28

32

32

0

47

20
int * ptr = 32;
x = *ptr

y
int y = 47; // assume at 28
x = &y

int * ptr = 20;
x = *(*ptr)

int * ptr = 24;
x = *(ptr+1)

• Heterogeneous records, like objects
• Typical linked list declaration:

• Usage:

• Usage with pointers:

struct cell {
int value;
struct cell *next;

};

Structs

typedef struct cell {
int value;
struct cell *next;

} cell_t;

cell_t c;
c.value = 42;
c.next = NULL;

cell_t *p;
p->value = 42;
p->next = NULL;

p->next is an
abbreviation for
(*p).next

LOGISTICS

Course staff
Prof. Eleanor Birrell
Edmunds 221

Research in security and privacy
OH: M 7-9pm, T 2-4pm

Claire
LeBlanc

Josh
Yum

Pei
Qin

Tonya
Chivandire

Ziang
Xue

The Course in a Nutshell
• Textbook

• Bryant and O’Halloran, Computer Systems: A Programmer’s
Perspective, third edition, Pearson, 2016 (Recommended)

• Classes
• Monday and Wednesday, 11am – 12:15pm in Edmunds 101

• Labs
• Wednesdays 7-8:15 in Edmunds 229/219
• Starts Today! Be sure to have an account and password

Mentor Session Schedule (Edmunds 227)
Monday Tuesday Wednesday Thursday Friday Saturday Sunday
4-6pm
7-9pm*

2-4pm*
7-9pm

LAB 7-9pm 1-3pm 2-4pm 3-5pm

Grading
• Assignments
• Introduced during labs, Due Tuesdays at 11:59pm
• Tremendous fun, work in pairs
• must complete them all
• Thirteen late days

• Check-ins
• one-question exams at the start of lab next week
• graded "Got it" / "Not yet"
• Can improve from "Not yet" to "Got it" via one-on-one meeting or extra

chance checkpoints
• no limit on number of attempts to improve grade

• Grades
• Must successfully complete all the assignments
• Beyond that, grade determined by the number of "Got it" topics

Course website
https://www.cs.pomona.edu/classes/cs105

• All information is on the course website
• All course materials get posted on the course website
• Links from the course page:

• Course materials (slides, demo code, videos, practice problems)

• Slack (#cs105-2023sp), for questions and discussion

• Gradescope, for submitting assignments and seeing grades

http://www.cs.pomona.edu/classes/cs105/2019sp/

