Lecture 22: File Systems

CS 105 Fall 2023

Memory Hierarchy

Smaller,
faster,
and
costlier
(per byte)
storage
devices

Larger,
slower,
and
cheaper
(per byte)
storage
devices

L6:

CPU registers hold words retrieved from

L0: /Regs the L1 cache. HEH

L1- L1 cache

(SRAM)

L2 cache
(SRAM)

L2:

L3 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

L2 cache holds cache lines
retrieved from L3 cache

L3 cache holds cache lines
retrieved from main memory.

Main memory
(DRAM)

Main memory holds A

disk blocks retrieved
from local disks.

Local secondary storage
(local disks)

L5:

Local disks hold files
retrieved from disks
on remote servers

Remote secondary storage
(e.g., cloud, web servers)

lo_‘

File Systems 101

- Long-term information storage goals
- should be able to store large amounts of information
- information must survive processes, power failures, etc.
- processes must be able to find information
- needs to support concurrent accesses by multiple processes

- Solution: the File System Abstraction
- interface that provides operations involving files

The File System Abstraction

. idn_tekrface that provides operations on data stored long-term on
IS

- a file is a named sequence of stored bytes

- name is defined on creation
- processes use name to subsequently access that file

- a file is comprised of two parts:
- data: information a user or application puts in a file
- an array of untyped bytes
- metadata: information added and managed by the OS
- €e.g., size, owner, security info, modification time

System |/O as a Uniform Interface

- Operating systems use the System I/O commands as an
interface for all 1/O devices

- Examples of files include
- file
- keyboard
- screen
- pipe
- device
- network

- The commands to read and write to an open file descriptor
are the same no matter what kind of "file" it is

The

File System Stack

Application

Language Libraries (e.g.,fopen, fread, fwrite, fclose,...)

POSIX API (open, read, write, close, ...)

File System

Generic Block Interface (block read/write)

Generic Block Layer

Specific Block Interface (protocol-specific read/write)

Device Driver

user level

kernel mode

File Descriptors

- Opening a file informs the kernel that you are getting
ready to access that file

int £d; /* file descriptor */

if ((fd = open("/etc/hosts", O RDONLY)) < 0) {
perror ("open") ;
exit(l);

}

- Returns a small integer file descriptor
- £fd == -1 indicates that an error occurred

Kernel Data Structures

Descriptor table

one table
per process)

stdin fd O
stdout fd1
stderr fd2

fd 3
fd 4 ~

Each process begins life with
three open files:
0: standard input (stdin)
1: standard output (stdout)
2: standard error (stderr)

Open file table
(table created on fork(), (entry created on open(),

shared by
all processes)

File A
vhode —

File pos

refcnt=1

vnode —
File pos

refcnt=1

vhode table

(one per open file,

shared by
all processes)

File type

File size

File num

File type

File size

File num

The File System Abstraction

. idn_tekrface that provides operations on data stored long-term on
IS

- a file is a named sequence of stored bytes

- name is defined on creation
- processes use name to subsequently access that file

- a file is comprised of two parts:
- data: information a user or application puts in a file
- an array of untyped bytes
- metadata: information added and managed by the OS
- €e.g., size, owner, security info, modification time

- two types of files
- normal files: data is an arbitrary sequence of bytes

- directories: a special type of file that provides mappings from human-
readable names to low-level names (i.e., file numbers)

Path Names

- Afile system has a root directory "/"

- Directories contain other files (including
subdirectories)

- Each UNIX directory also contains
2 special entries

. "." = this directory
. ".." = parent directory

- Each path from root is a name for a leaf
- [foo/foo.txt
- /bar/baz/baz.txt

- Absolute paths: path of file from the
root directory

- Relative paths: path from current
working directory

Exercise 1: Path Names

I've created a file named examplel.txt in the directory c¢s105,
which is located in the root directory.

1. Specify an absolute path to the file examplel.txt

2. Specify a relative path to the file examplel.txt from my
home directory (/home/ebac2018/).

I've created a file named example2.txt in my home directory
(/home/ebac2018/).

3. Specify an absolute path to the file example2.txt

4. Specify a relative path to the file example2.txt from your
home directory

Hint: you can always get back to your home directory with cd ~
Hint: the name of your home directory is your username

Directories

- a directory is a file that provides mappings from human-
readable names to low-level names (i.e., file numbers):

- contents of a file are any array of directory entries

- each directory entry contains a human-readable name and the
corresponding file number

- OS uses path name to find directories and files

A S
File2 | bin 737
I | usr 924
home 158 |- AR =N
—— i | ada 682
> File 158 | eleanor 818
"/lhome" | rett 830 |-
AL

L. File 818 music 320

"/homeleleanor" | work 219

T 1o
foo.txt 871 |... he qui
: brown fox

2> File 871 over the
"/home/eleanor/foo.txt" lazy dog.

Implementation Basics

- Directories: file name -> low-level names (i.e., file numbers)

- File system index structures: file number -> block(s)

File System Challenges

- Performance: despite limitations of disks

- Flexibility: need to support diverse file types and
workloads

- Persistence: store data long term

- Reliability: resilient to OS crashes and hardware failures

File System Properties

- Most files are small
- need strong support for small files (optimize the common case)
- block size can't be too big

- Directories are typically small
- usually 20 or fewer entries

- Some files are very large
- must handle large files
- large file access should be reasonably efficient

- File systems are usually about half full

Storing Files

Possible ways to allocate files:

- Continuous allocation: all bytes together, in order

- Linked structure: each block points to the next block

- Indexed structure: index block points to many other blocks

- Log structure: sequence of segments, each containing updates

start | size
0

file1 4

Continuous Allocation IE R

fle3 10 3

All bytes together, in order ff'e4 13 4

0123456 78 91011121314151617181920212 M5 21 '3
IR [[T 1 [TTT11] [T 1]
filel file2 file4 file5

+ Simple: state required per file = start block & size
+ Efficient: entire file can be read with one seek
- Fragmentation: external is bigger problem

- Usability: user needs to know size of file at time of
creation

Linked Allocation

Each file is stored as linked list of blocks: First word of each
block points to next block, rest of disk block is file data

—

Mo o I o [[7 I

8 X

Pud BNE

SN—

/

file1
file2
file3
file4
file5

313

| start

2
9
6
13
15

Linked Allocation

Each file is stored as linked list of blocks: First word of each

block points to next block, rest of disk block is file data
N N 0123456789 10111213

10]9 [o[x7[x]s[x[12[11[5[3]x]+ INICIN T TN [
—__ _

| start

filel 2
file2 9
file3 6
filed 13
file5 15

FAT File System

- Developed by
Microsoft for MS-DOS

- decoupled linked
allocation

- 1 FAT entry per block
("next pointer")
- EOF for last block

- 0 indicates free block

- low-level file name =
FAT index of first block
in file

0
1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

Qeosscccsceces

Data Blocks

File 9 Block 3

File 9 Block O
File 9 Block 1
File 9 Block 2

File 9 Block 4

File 9

M File 12

Evaluating FAT

How is FAT good?

- Simple: state required per file: start block only
- Widely supported

- No external fragmentation

- block used only for data

How is FAT bad?

- Poor locality

- Many file seeks (unless entire FAT in memory)
- Poor random access

- Limited metadata

- Limited access control

- Limitations on volume and file size

- No support for reliability techniques

Indexed Allocation: Fast File System (FFS)

- free-based, multi-level index
0123456 78 91011121314151617 181920 21 22 23 24 25 26 27

()\)
Y |
T inode blocks data blocks
superblock

- superblock identifies file system's key parameters
- inodes store metadata and pointers
- datablocks store data

FFS Superblock

- Identifies file system’s key parameters:
- type
- block size
- inode array location and size
- location of free list

012 345 6 78 910111213141516 17 18 192021 22 23 24 25 26 27

)\ J

\
| |
I inode blocks data blocks
superblock

FFS inodes

- iInode blocks contain an array

File
Metadata

of inodes
- each inode contains:
- Metadata
- info about which blocks references
store that file to file

blocks

0 1 2 3 48 J 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27

)\ J

\
| |
I inode blocks data blocks
superblock

Inode Metadata

- Type
- ordinary file
- directory
- symbolic link
- special device

- Size of the file (in #bytes)

- # links to the i-node

- Owner (user id and group id)
- Protection bits

- Times: creation, last accessed, last
modified

File

Metadata

references
to file
blocks

Each "Pointer" is a block
umber, not a memory address

n
Indirect blocks contain
FFS |ndeX Stru Ctu reS arrays of block numbers
Inode Array Triple Do.uble |
Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks
g
File '
Metadata
Direct Pointer [— >-
Direct Pointer , .
Direct Pointer
Direct Pointer 4'
Direct Pointer] >.
Direct Pointer -
Direct Pointer
Direct Pointer —|—'
Direct Pointer _\—P.
Direct Pointer R _,—P.
Direct Pointer i ,-
Direct Pointer | >.

Indirect Pointer
Double Ind Ptr

Triple Ind Ptr _I—’-

r,,

Max File Size

Inode Array

Assume: blocks are 4KB (212 bytes)
block numbers are 4 byte values

Triple Double

File
Metadata

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Direct Pointer

Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks
g
]

12 - 212 bytes directly
reachable from inode

210212 pytes indirectly =
reachable from inode

229 . 212 pytes doubly indirect Ll

v

Direct Pointer

\ 4

Indirect Pointer

Double Ind Ptr

Triple Ind Ptr

Exercise 2: Inode Structures

Assume we are using the inode structure we just described,
and assume again that each block is 4K (214) and that each
block reference is 4 bytes.

- Which pointers in the inode of a 32KB file would be non-null?

- Which pointers in the inode of a 47MB file would be non-null?

FFS Directory Structure

- Originally: directory was array of 16 byte entries
- 14 byte file name
- 2 byte i-node number

- Now: implicit list. Each entry contains:
- 4-byte inode number
- Full record length
- Length of filename

- Filename
- First entry is “.”, points to self

- Second entry is “..”, points to parent inode

(13RH

2

S —h-h
QY -
S 5 0Mm
NOoON
WwkE=W

N
w

Exercise 3: Indexed Allocation

Which inodes and data blocks would need to be accessed to
read (all of) file /foo/bar/baz?

I hear
and I
forget. Joee
I see a

under
. stand

bin 47]nd I
foo 31|remembe
usr 98|and 1

194 301 302 912 913

31 40

Key Characteristics of FFS

- Tree Structure
- efficiently find any block of a file
- High Degree (or fan out)
- minimizes number of seeks
- supports sequential reads & writes
- Fixed Structure
- implementation simplicity
- Asymmetric

- not all data blocks are at the same level
- supports large files

- small files don’t pay large overheads

Implementation Basics

- Directories: file name -> low-level names (i.e., file numbers)
- Index structures: file number -> block

- Free space maps: find a free block (ideally nearby)

Free List

To write files, need to keep track of which blocks are
currently free

How to maintain?
- linked list of free blocks
- inefficient (why?)

- linked list of metadata blocks that in turn point to free
blocks — ™ > :

/ Vi A\

- simple and efficient

/ \
/. AN
- bitmap ﬁ/l AN l\\r
- actually used

Problem: Poor Performance

- In a naive implementation of FFS, performance starts bad
and gets worse

- One early implementation delivered only 2% disk
bandwidth

- The root of the problem: poor locality
- data blocks of a file were often far from its inode

- file system would end up highly fragmented: accessing a logically
continuous file would require going back and forth across the

Implementation Basics

- Directories: file name -> low-level names (i.e., file numbers)
- Index structures: file number -> block
- Free space maps: find a free block (ideally nearby)

- Performance optimizations (e.g., locality heuristics)

Performance Optimizations

- Grouped Allocation: disk organized into groups that are
(temporally) close, try to allocate all file blocks in same group

- Defragmentation: periodically rearrange files to improve locality

- Page Cache: to reduce costs of accessing files, cache file
contents in memory (e.g., device data, memory-mapped files)

- Copy-on-write (COW): create new, updated copy at time of
update

- Write Buffering: buffer writes and periodically flush to disk

