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File Systems 101

- Long-term information storage goals
- should be able to store large amounts of information
- information must survive processes, power failures, etc.
- processes must be able to find information
- needs to support concurrent accesses by multiple processes

- Solution: the File System Abstraction
- interface that provides operations involving files



The File System Abstraction

. idn_tekrface that provides operations on data stored long-term on
IS

- a file is a named sequence of stored bytes

- name is defined on creation
- processes use name to subsequently access that file

- a file is comprised of two parts:
- data: information a user or application puts in a file
- an array of untyped bytes
- metadata: information added and managed by the OS
- €e.g., size, owner, security info, modification time



System |/O as a Uniform Interface

- Operating systems use the System I/O commands as an
interface for all 1/O devices

- Examples of files include
- file
- keyboard
- screen
- pipe
- device
- network

- The commands to read and write to an open file descriptor
are the same no matter what kind of "file" it is
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File Descriptors

- Opening a file informs the kernel that you are getting
ready to access that file

int £d; /* file descriptor */

if ((fd = open("/etc/hosts", O RDONLY)) < 0) {
perror ("open") ;
exit(l);

}

- Returns a small integer file descriptor
- £fd == -1 indicates that an error occurred



Kernel Data Structures

Descriptor table

one table
per process)
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stdout fd1
stderr fd2

fd 3
fd 4 ~

Each process begins life with
three open files:
0: standard input (stdin)
1: standard output (stdout)
2: standard error (stderr)
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The File System Abstraction

. idn_tekrface that provides operations on data stored long-term on
IS

- a file is a named sequence of stored bytes

- name is defined on creation
- processes use name to subsequently access that file

- a file is comprised of two parts:
- data: information a user or application puts in a file
- an array of untyped bytes
- metadata: information added and managed by the OS
- €e.g., size, owner, security info, modification time

- two types of files
- normal files: data is an arbitrary sequence of bytes

- directories: a special type of file that provides mappings from human-
readable names to low-level names (i.e., file numbers)



Path Names

- Afile system has a root directory "/"

- Directories contain other files (including
subdirectories)

- Each UNIX directory also contains
2 special entries

. "." = this directory
. ".." = parent directory

- Each path from root is a name for a leaf
- [foo/foo.txt
- /bar/baz/baz.txt

- Absolute paths: path of file from the
root directory

- Relative paths: path from current
working directory



Exercise 1: Path Names

I've created a file named examplel.txt in the directory c¢s105,
which is located in the root directory.

1. Specify an absolute path to the file examplel.txt

2. Specify a relative path to the file examplel.txt from my
home directory (/home/ebac2018/).

I've created a file named example2.txt in my home directory
(/home/ebac2018/).

3. Specify an absolute path to the file example2.txt

4. Specify a relative path to the file example2.txt from your
home directory

Hint: you can always get back to your home directory with cd ~
Hint: the name of your home directory is your username



Directories

- a directory is a file that provides mappings from human-
readable names to low-level names (i.e., file numbers):

- contents of a file are any array of directory entries

- each directory entry contains a human-readable name and the
corresponding file number

- OS uses path name to find directories and files
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Implementation Basics

- Directories: file name -> low-level names (i.e., file numbers)

- File system index structures: file number -> block(s)



File System Challenges

- Performance: despite limitations of disks

- Flexibility: need to support diverse file types and
workloads

- Persistence: store data long term

- Reliability: resilient to OS crashes and hardware failures



File System Properties

- Most files are small
- need strong support for small files (optimize the common case)
- block size can't be too big

- Directories are typically small
- usually 20 or fewer entries

- Some files are very large
- must handle large files
- large file access should be reasonably efficient

- File systems are usually about half full



Storing Files

Possible ways to allocate files:

- Continuous allocation: all bytes together, in order

- Linked structure: each block points to the next block

- Indexed structure: index block points to many other blocks

- Log structure: sequence of segments, each containing updates
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+ Simple: state required per file = start block & size
+ Efficient: entire file can be read with one seek
- Fragmentation: external is bigger problem

- Usability: user needs to know size of file at time of
creation



Linked Allocation

Each file is stored as linked list of blocks: First word of each
block points to next block, rest of disk block is file data
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Linked Allocation

Each file is stored as linked list of blocks: First word of each

block points to next block, rest of disk block is file data
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FAT File System

- Developed by
Microsoft for MS-DOS

- decoupled linked
allocation

- 1 FAT entry per block
("next pointer")
- EOF for last block

- 0 indicates free block

- low-level file name =
FAT index of first block
in file
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Evaluating FAT

How is FAT good?

- Simple: state required per file: start block only
- Widely supported

- No external fragmentation

- block used only for data

How is FAT bad?

- Poor locality

- Many file seeks (unless entire FAT in memory)
- Poor random access

- Limited metadata

- Limited access control

- Limitations on volume and file size

- No support for reliability techniques



Indexed Allocation: Fast File System (FFS)

- free-based, multi-level index
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- superblock identifies file system's key parameters
- inodes store metadata and pointers
- datablocks store data



FFS Superblock

- Identifies file system’s key parameters:
- type
- block size
- inode array location and size
- location of free list
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FFS inodes

- iInode blocks contain an array

File
Metadata

of inodes
- each inode contains:
- Metadata
- info about which blocks references
store that file to file

blocks
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Inode Metadata

- Type
- ordinary file
- directory
- symbolic link
- special device

- Size of the file (in #bytes)

- # links to the i-node

- Owner (user id and group id)
- Protection bits

- Times: creation, last accessed, last
modified

File

Metadata

references
to file
blocks




Each "Pointer" is a block
umber, not a memory address
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Max File Size

Inode Array

Assume: blocks are 4KB (212 bytes)
block numbers are 4 byte values
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Exercise 2: Inode Structures

Assume we are using the inode structure we just described,
and assume again that each block is 4K (214) and that each
block reference is 4 bytes.

- Which pointers in the inode of a 32KB file would be non-null?

- Which pointers in the inode of a 47MB file would be non-null?



FFS Directory Structure

- Originally: directory was array of 16 byte entries
- 14 byte file name
- 2 byte i-node number

- Now: implicit list. Each entry contains:
- 4-byte inode number
- Full record length
- Length of filename

- Filename
- First entry is “.”, points to self

- Second entry is “..”, points to parent inode
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Exercise 3: Indexed Allocation

Which inodes and data blocks would need to be accessed to
read (all of) file /foo/bar/baz?
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Key Characteristics of FFS

- Tree Structure
- efficiently find any block of a file
- High Degree (or fan out)
- minimizes number of seeks
- supports sequential reads & writes
- Fixed Structure
- implementation simplicity
- Asymmetric

- not all data blocks are at the same level
- supports large files

- small files don’t pay large overheads



Implementation Basics

- Directories: file name -> low-level names (i.e., file numbers)
- Index structures: file number -> block

- Free space maps: find a free block (ideally nearby)



Free List

To write files, need to keep track of which blocks are
currently free

How to maintain?
- linked list of free blocks
- inefficient (why?)

- linked list of metadata blocks that in turn point to free
blocks — ™ > :
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- simple and efficient

/ \
/. AN
- bitmap ﬁ/l AN l\\r
- actually used




Problem: Poor Performance

- In a naive implementation of FFS, performance starts bad
and gets worse

- One early implementation delivered only 2% disk
bandwidth

- The root of the problem: poor locality
- data blocks of a file were often far from its inode

- file system would end up highly fragmented: accessing a logically
continuous file would require going back and forth across the



Implementation Basics

- Directories: file name -> low-level names (i.e., file numbers)
- Index structures: file number -> block
- Free space maps: find a free block (ideally nearby)

- Performance optimizations (e.g., locality heuristics)



Performance Optimizations

- Grouped Allocation: disk organized into groups that are
(temporally) close, try to allocate all file blocks in same group

- Defragmentation: periodically rearrange files to improve locality

- Page Cache: to reduce costs of accessing files, cache file
contents in memory (e.g., device data, memory-mapped files)

- Copy-on-write (COW): create new, updated copy at time of
update

- Write Buffering: buffer writes and periodically flush to disk



