
CS 105 Fall 2023

Lecture 18: Virtual Memory

Multiprocessing: The Illusion

• Process provides each program with two key abstractions:
• Logical control flow
• Each program seems to have exclusive use of the CPU
• Provided by kernel mechanism called context switching

• Private address space
• Each program seems to have exclusive use of main memory.
• Provided by kernel mechanism called virtual memory

CPU

Registers

Memory

Stack
Heap

Code
Data

CPU

Registers

Memory

Stack
Heap

Code
Data …

CPU

Registers

Memory

Stack
Heap

Code
Data

Multiprocessing: The Reality
• Computer runs many processes simultaneously
• Running program “top” on Mac

• System has 123 processes, 5 of which are active
• Identified by Process ID (PID)

Virtual Memory Goals
• Isolation: don’t want different

process states collided in
physical memory

• Efficiency: want fast

reads/writes to memory

• Sharing: want option to
overlap for communication

• Utilization: want best use of
limited resource

• Virtualization: want to create
illusion of more resourcesCode

Data

Stack

Heap

Address Translation

MMU
Virtual Address invalid

Exception
Physical Address

Data

Code
Data

Stack

Heap

Base-and-Bound

Code
Data

Stack

Heap

Physical Memory

Virtual Memory

Base

Bound

Base-and-Bound

vaddr vaddr > Bound
Exception

Data

paddr = vaddr + Base

Code
Data

Stack

Heap

MMU
Base Bound

Exercise 1: Base-and-Bound
Assume that you are currently executing a process P with
Base 0x1234 and Bound 0x100.
• What is the physical address that corresponds to the

virtual address 0x47?
• What is the physical address that corresponds to the

virtual address 0x123?

0x127b

invalid

Evaluating Base-and-Bound
• Isolation: don’t want different

process states collided in
physical memory

• Efficiency: want fast

reads/writes to memory

• Sharing: want option to
overlap for communication

• Utilization: want best use of
limited resource

• Virtualization: want to create
illusion of more resources

Segmentation

Code
Data

Stack

Heap

Physical Memory

Virtual Memory

CBase

SBound

CBound

SBase

HBase
HBound

DBase
DBound

Segmentation

vaddr

offset > Bound[idx]
or access not allowed

Exception

Data

paddr = Base[idx] + offset

Code
Data

Stack

Heap

MMU
Base Bound Access

R,W
R,W
R,W
R,X

idx offset

Exercise 2: Segmentation
Assume that you are currently executing a process P with
the following segment table:

• What is the physical address that corresponds to the
virtual address 0x001?

• What is the physical address that corresponds to the
virtual address 0xD47?

Base Bound Access
0x4747 0x80 R,W
0x2424 0x40 R,W
0x0023 0x80 R,W
0x1000 0x200 R,X

00 0000000001 0x4748

11 0101000111 0x1147

Evaluating Segmentation
• Isolation: don’t want different

process states collided in
physical memory

• Efficiency: want fast

reads/writes to memory

• Sharing: want option to
overlap for communication

• Utilization: want best use of
limited resource

• Virtualization: want to create
illusion of more resources

Paging

Code
Data

Stack

Heap

Physical Memory

Virtual Memory

Frame 0
Frame 1
Frame 2
Frame 3
Frame 4
Frame 5
Frame 6
Frame 7
Frame 8
Frame 9

Frame 10
Frame 11
Frame 12
Frame 13
Frame 14
Frame 15
Frame 16
Frame 17

Page 0
Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7

Paging

vaddr
access not allowed

Exception

Data

paddr =

Code
Data

Stack

Heap

MMU
Frame Access
47 R,W
NULL R,W
13 R,W
42 R,X

page# offset

Frame[page#] offset

…

Exercise 3: Paging
Assume that you are currently executing a process P with
the following page table on a system with 16 byte pages:

• What is the physical address that corresponds to the
virtual address 0x147?

• What is the physical address that corresponds to the
virtual address 0x16E?

Frame Access
0x47 R,W
0xF4 R,W
NULL R,W
0x23 R,X

…
…

00010100 0111 0x237

00010110 1110 0xF4E

0x15
0x14

0x17
0x16

Exercise 3: Paging
Assume that you are currently executing a process P with
the following page table on a system with 16 byte pages:

Frame Access
0x47 R,W
0xF4 R,W
NULL R,W
0x23 R,X

…
…

Frame 0x22
Frame 0x23
Frame 0x24
Frame 0x25

Frame 0x45
Frame 0x46
Frame0x47
Frame 0x48

Frame 0xF0
Frame 0xF1
Frame 0xF2
Frame 0xF3
Frame 0xF4
Frame 0xF5

…
…Page 0x14

Page 0x15
Page 0x16
Page 0x17

0x147 → 0x237

0x15
0x14

0x17
0x16

Physical Memory

Virtual Memory

Page 0x14

Page 0x17

Page 0x16

Memory as a Cache
• each page table entry has a

valid bit
• for valid entries, frame

indicates physical address of
page in memory

• a page fault occurs when a
program requests a page that
is not currently in memory
• handled much like a cache miss
• evict another page in memory to

make space (which one?)
• takes time to handle, so context

switch

MMU
v Frame Access
1 47 R,W
0 NULL R,W
0 13 R,W
1 42 R,X

…

Thrashing
• working set is the collection of a pages a process requires

in a given time interval
• if it doesn't fit in memory, program will thrash

Exercise 4: Paging
Assume that you are currently executing a process P with
the following page table on a system with 256 byte pages:

• What is the physical address that corresponds to the
virtual address 0xF947?

• What is the physical address that corresponds to the
virtual address 0xF700?

v Frame Access
1 0x47 R,W
1 0x24 R,W
0 NULL R,W
0 0x23 R,X

248
247

250
249

…
…

0xF9 0x47 0x2447

0xF7 0x00 page fault

Evaluating Paging
• Isolation: don’t want different

process states collided in
physical memory

• Efficiency: want fast

reads/writes to memory

• Sharing: want option to
overlap for communication

• Utilization: want best use of
limited resource

• Virtualization: want to create
illusion of more resources

