
CS 105 Fall 2023

Lecture 1: Bits and Binary Operations

Review: Abstraction

Review: C
• compiled, imperative language that provides low-level

access to memory
• low overhead, high performance

• developed at Bell labs in the
1970s

• C (and related languages) still commonly used
today

Review: Pointers
• Pointers are addresses in

memory (i.e., indexes into the
array of bytes)

• Most pointers declare how to
interpret the value at (or
starting at) that address

• Example:

• Dereferencing pointers:

Pointer Types x86-64

void* 8

int* 8

char* 8

⋮ 8

int myVariable = 47;
int* ptr = &myVariable;

int var2 = *ptr
& and * are inverses of one another

& is an "address of" operator
* is a "value at" operator

Casting between Pointer Types
• You can cast values between different types
• This includes between different pointer types!

• Doesn't change value of address
• Does change what you get when you dereference!

• Example:
int x = 47; // assume allocated at address 24

char* ptr2 = (char*) ptr; // ptr2 == 24

32

47

42

13

20

24

28

32

x

int y = *ptr; // y == 47
char c = *ptr2; // c == ??

int* ptr = &x; // ptr == 24 c

Review: Arrays
• Contiguous block of memory
• Random access by index
• Indices start at zero

• Declaring an array:

• Accessing an array:

• Arrays are pointers!
• The array variable stores the address of the first element in the array
• Strings are arrays of characters -> strings are char*s

int array1[5]; // array of 5 ints named array1

char array2[47]; // array of 47 chars named array2

int array3[7][4]; // two dimensional array named array3

int x = array1[0];

Pointer Arithmetic

• Location of ptr+k depends on the type of ptr
• adding 1 to a pointer p adds 1*sizeof(*p) to the

address

• array[k] is the same as *(array+k)

char* ptr = &my_char; // assume ptr == 32
int* ptr2 = (int*) ptr;

ptr += 1;
ptr2 += 1;

// ptr == 33

// ptr2 == 36

// ptr2 == 32

Exercise 1
What does x evaluate to in each of the following?
1.

2.

3.

4.

20

24

28

32

32

13

47

20
int* ptr = 20;
int* x = ptr+2;

int* ptr = 20;
int x = *(ptr+2)

char* ptr = 20;
char* x = ptr+2;

char* ptr = 20;
int x = *((int*)(ptr + 4));

• Heterogeneous records, like objects
• Typical linked list declaration:

• Usage:

• Usage with pointers:

struct cell {
 int value;
 struct cell *next;
};

Structs

typedef struct cell {
 int value;
 struct cell *next;
} cell_t;

cell_t c;
c.value = 42;
c.next = NULL;

cell_t *p;
p->value = 42;
p->next = NULL;

p->next is an
abbreviation for
(*p).next

Review: Bytes and Memory
• Memory is an array of bits

• A byte is a unit of eight bits

• An index into the array is an address,
location, or pointer
• Often expressed in hexadecimal

• We speak of the value in memory at
an address
• The value may be a single byte …
• … or a multi-byte quantity starting

at that address
1
0

1
0

0
0

1
1

0
1

1
0

1
1

0
0

0
1

1
1

0
1

0
0

1
1

0
0

1
1

1
0

0

1

2

3

01101100

01010011

11010001

00110111

bytes

Boolean Algebra
• Developed by George Boole in 19th Century
• Algebraic representation of logic---encode “True” as 1 and

“False” as 0

• How does this map to set operations?

And Or

Not Exclusive-Or (Xor)

Exercise 2: Boolean Operations
• Evaluate each of the following expressions

1. 1 | (~1)
2. ~(1 | 1)
3. (~1) & 1
4. ~(1 ^ 1)

General Boolean algebras

• Bitwise operations on bytes

01101001
& 01010101
 01000001

01101001
| 01010101
 01111101

01101001
^ 01010101
 00111100

~ 01010101
 1010101001000001 01111101 00111100 10101010

Exercise 3: Bitwise Operations
• Assume: a = 01101100, b = 10101010

• What are the results of evaluating the following Boolean
operations?

• ~a
• ~b
• a & b
• a | b
• a ^ b

Bitwise vs Logical Operations in C
• Bitwise Operators &, |, ~, ^

• View arguments as bit vectors
• operations applied bit-wise in parallel

• Logical Operators &&, ||, !
• View 0 as “False”
• View anything nonzero as “True”
• Always return 0 or 1
• Early termination

Exercise 4: Bitwise vs Logical Operations
• ~01000001
• ~00000000
• ~~01000001

• !01000001
• !00000000
• !!01000001

• 01101001 & 01010101
• 01101001 | 01010101

• 01101001 && 01010101
• 01101001 || 01010101

Bit Shifting
• Left Shift: x << y

• Shift bit-vector x left y positions
• Throw away extra bits on left
• Fill with 0’s on right

• Right Shift: x >> y
• Shift bit-vector x right y positions
• Throw away extra bits on right
• Logical shift: Fill with 0’s on left
• Arithmetic shift: Replicate most

significant bit on left

Choice between logical and
arithmetic depends on the
type of data

Undefined Behavior if you
shift amount < 0 or ≥ word
size

Example: Bit Shifting
• 01101001 << 4
• 01101001 >>l 2
• 01101001 >>a 4

10010000
00011010
00000110

Exercise 5: Bit Shifting
• 10101010 << 4
• 10101010 >>l 4
• 10101010 >>a 4

Bits and Bytes Require Interpretation
10001100 00001100 10101100 00000000
might be interpreted as

• The integer 3,485,745
• A floating point number close to 4.884569 x 10-39

• The string “105”
• A portion of an image or video
• An address in memory

Information is Bits + Context

