
CS 105 Fall 2023

Lecture 0: Introduction to Computer Systems

https://cs.pomona.edu/classes/cs105/

https://cs.pomona.edu/classes/cs105/

Abstraction

• Example 1: Is x2 ≥ 0?
• Floats: Yes!

• Ints:
• 40000 * 40000 ➙ 1600000000
• 50000 * 50000 ➙ ??

• Example 2: Is (x + y) + z = x + (y + z)?
• Ints: Yes!
• Floats:
• (2^30 + -2^30) + 3.14 ➙ 3.14
• 2^30 + (-2^30 + 3.14) ➙ ??

Correctness

Performance

• Hierarchical memory organization
• Performance depends on access patterns

• Including how step through multi-dimensional array

void copyji(int src[2048][2048],
 int dst[2048][2048]){
 int i,j;
 for (j = 0; j < 2048; j++){
 for (i = 0; i < 2048; i++){
 dst[i][j] = src[i][j];
 }
 }
}

void copyij(int src[2048][2048],
 int dst[2048][2048]){
 int i,j;
 for (i = 0; i < 2048; i++){
 for (j = 0; j < 2048; j++){
 dst[i][j] = src[i][j];
 }
 }
}

81.8ms4.3ms

Security

void admin_stuff(int authenticated){
 if(authenticated){
 // do admin stuff
 // should only happen if user is authenticated
 printf("The answer is 42\n");
 }
}

int dontTryThisAtHome(char* user_input, int size) {
 char data[size];
 int ret = memcpy(*user_input, data);
 return ret;
}

A Computer System

Main
memory

I/O
bridgeBus interface

ALU

Register file

CPU

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Display
Disk

I/O bus Expansion slots for
other devices such
as network adapters

executable
stored on disk

PC

C
• compiled, imperative language that provides low-level

access to memory
• low overhead, high performance

• developed at Bell labs in the
1970s

• C (and related languages) still commonly used
today

Variables
• Declaration

• Assignment

• Declaration and assignment

int myVariable;

type name semi-colon

myVariable = 47;

name semi-colonvalue

int myVariable = 47;

Operations
• Arithmetic Operations: +, -, *, /, %

• Boolean Operators: ==, !=, >, >=, >, >=

• Logical Operations: &&, ||, !

• Bitwise Operations: &, |, ~, ^
int x = 47;
int y = ~x;
y = x & y;

int x = 47;
int y = !x;
y = x && y;

int x = 47;
int y = x + 13;
y = (x * y) % 5;

int x = (13 == 47);

Control Flow
Conditionals While Loops

int x = 13;
int y;
if (x == 47){
 y = 1;
} else {
 y = 0;
}

int x = 47;

while (x > 0){
 x = x – 1;
}

For Loops

int x = 0;
for (int i=0; i < 47; i++){
 x = x + i;
}

Do-While Loops

int x = 47;
do {
 x = x - 1;
} while (x > 0);

Functions
Declaring a Function Calling a Function

int myFunction(int x, int y){

 int z = x – 2*y;
 return z * x;

}

int a;

a = myFunction(47, 13);

Exercise 1
• Define a function sum_interval that takes two integers

and returns an integer. If the second integer argument is
greater than (or equal to) the first, it returns the sum of the
integer values between those two numbers (inclusive).
Otherwise it returns -1.

Main Functions
• By convention, main functions in C take two arguments:

1. int argc
2. char** argv

• By convention, main functions in C return an int
• 0 if program exited successfully

int main(int argc, char** argv){
 // do stuff

 return 0;
}

Aside: Printing

printf("Hello world!\n");

printf("%d is a number\n", 13);

printf("%d is a number greater than %f\n”, 47, 3.14);

Compilation
• gcc -o hello hello.c

Pre-
processor
(cpp)

hello.i Compiler
(cc1)

hello.s Assembler
(as)

hello.o Linker
(ld)

hellohello.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

printf.o

#include<stdio.h>

int main(int argc,
 char ** argv){

 printf("Hello
 world!\n");
 return 0;
}

…
int printf(const char *
 restrict,
 ...)
__attribute__((__format_
_ (__printf__, 1, 2)));
…
int main(int argc,
 char ** argv){

 printf("Hello
 world!\n");
 return 0;
}

pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
leaq L_.str(%rip), %rax
movl $0, -4(%rbp)
movl %edi, -8(%rbp)
movq %rsi, -16(%rbp)
movq %rax, %rdi
movb $0, %al
callq _printf
xorl %ecx, %ecx
movl %eax, -20(%rbp)
movl %ecx, %eax
addq $32, %rsp
popq %rbp
retq

55
48 89 e5
48 83 ec 20
48 8d 05 25 00 00 00
c7 45 fc 00 00 00 00
89 7d f8
48 89 75 f0
48 89 c7
b0 00
e8 00 00 00 00
31 c9
89 45 ec
89 c8
48 83 c4 20
5d
c3

compiler output name filename

Running a Program
• ./hello

Bits
• a bit is a binary digit that can have two possible values

• can be physically represented with a two state device

Storing bits
• Static random access memory (SRAM):

stores each bit of data in a flip-flop, a
circuit with two stable states

• Dynamic Memory (DRAM): stores each
bit of data in a capacitor, which stores
energy in an electric field (or not)

• Magnetic Disk: regions of the platter are
magnetized with either N-S polarity or
S-N polarity

• Optical Disk: stores bits as tiny
indentations (pits) or not (lands) that
reflect light differently

• Flash Disk: electrons are stored in one of
two gates separated by oxide layers

Bytes and Memory
• Memory is an array of bits

• A byte is a unit of eight bits

• An index into the array of memory is
an address, location, or pointer
• Often expressed in hexadecimal

• We speak of the value in memory at
an address
• The value may be a single byte …
• … or a multi-byte quantity starting

at that address
1
0

1
0

0
0

1
1

0
1

1
0

1
1

0
0

0
1

1
1

0
1

0
0

1
1

0
0

1
1

1
0

0

1

2

3

01101100

01010011

11010001

00110111

bytes

C Types
C Data Type x86-64

int 4

float 4

double 8

short 2

long 8

unsigned short 2

unsigned int 4

unsigned long 8

char 1

unsigned char 1

Pointers
• Pointers are addresses in

memory (i.e., indexes into the
array of bytes)

• Most pointers declare how to
interpret the value at (or
starting at) that address

• Example:

• Dereferencing pointers:

Pointer Types x86-64

void* 8

int* 8

char* 8

⋮ 8

int myVariable = 47;
int* ptr = &myVariable;

int var2 = *ptr
& and * are inverses of one another

& is an "address of" operator
* is a "value at" operator

Exercise 2
What does x evaluate to in each of the following?
1.

2.

3.

4.

20

24

28

32

32

47

42

13
int* ptr = 32;
x = *ptr;

y
int y = 42; // assume allocated at address 28
x = &y;

int* ptr = 20;
x = *(*ptr);

int* x = 24;
*x = 47;

0

Casting between Pointer Types
• You can cast values between different types
• This includes between different pointer types!

• Doesn't change value of address
• Does change what you get when you dereference!

• Example:
int x = 47; // assume allocated at address 24

char* ptr2 = (char*) ptr;

32

47

42

13

20

24

28

32

x

int y = *ptr
char c = *ptr2;

int* ptr = &x;

Arrays
• Contiguous block of memory
• Random access by index

• Indices start at zero

• Declaring an array:

• Accessing an array:

• Arrays are pointers!
• The array variable stores the address of the first element in the array

int array1[5]; // array of 5 ints named array1

char array2[47]; // array of 47 chars named array2

int array3[7][4]; // two dimensional array named array3

int x = array1[0];

Pointer Arithmetic

• Location of ptr+k depends on the type of ptr
• adding 1 to a pointer p adds 1*sizeof(*p) to the

address

• array[k] is the same as *(array+k)

int * ptr = &myVariable;
ptr += 1;

char * ptr2 = (char *) ptr;
ptr2 += 1;

Exercise 3
What does x evaluate to in each of the following?
1.

2.

3.

4.

20

24

28

32

32

13

47

20

y

int* ptr = 20;
int* x = ptr+1;

int* ptr = 20;
int x = *(ptr+2)

char* ptr = 20;
char* x = ptr+1;

char* ptr = 20;
int x = *((int*)(ptr + 4));

Strings
• Strings are just arrays of characters

• aka strings are just pointers

• declared as type char*

• End of string is denoted by null byte \0

• Heterogeneous records, like objects
• Typical linked list declaration:

• Usage:

• Usage with pointers:

struct cell {
 int value;
 struct cell *next;
};

Structs

typedef struct cell {
 int value;
 struct cell *next;
} cell_t;

cell_t c;
c.value = 42;
c.next = NULL;

cell_t *p;
p->value = 42;
p->next = NULL;

p->next is an
abbreviation for
(*p).next

LOGISTICS

The Course in a Nutshell
• Textbooks (not required)

• Bryant and O’Halloran, Computer Systems: A Programmer’s Perspective,
third edition, Pearson, 2016

• Arpaci-Dusseau and Arpaci-Dusseau, Operating Systems: Three Easy
Pieces, online, 2018

• Classes
• Monday and Wednesday, 11am – 12:15pm in Edmunds 114

• Labs
• Wednesdays 7-8:15 in Edmunds 229/219
• Starts Wednesday!

• Office Hours M 7-9pm and T 1-2:30pm
• Mentor Sessions TBA

Grading
• Assignments (10)

• Introduced during labs, Due Tuesdays at 11:59pm
• Tremendous fun, work in pairs
• 10 late days

• Check-ins (5)
• three-question quizzes
• Sept 20, Oct 11, Nov 1, Nov 20, Dec 6
• Can improve grade on any question(s) during "Extra Chance Check-in"

• Grades
• Must successfully complete all the assignments
• Beyond that, 50% assignments, 45% check-ins, 5% participation

Course website
https://cs.pomona.edu/classes/cs105

• All information is on the course website
• All course materials get posted on the course website
• Links from the course page:

• Slack (#cs105-2023fa), for questions and discussion

• Gradescope, for submitting assignments and seeing grades

• Additional resources

https://cs.pomona.edu/classes/cs105

