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1. For this problem, imagine that you have just been hired by Mother Nature to help her out with the
chemical reaction to form water, which she has been struggling with due to synchronization problems.
The trick is to get two Hydrogen atoms and one Oxygen atom all together at the same time. The atoms
are threads. Each Hydrogen atom invokes a procedure hReady when it is ready to react, and each
Oxygen atom invokes a procedure oReady when it is ready. The procedures should delay until there
are at least two Hydrogen atoms and one Oxygen atom present, and then one of the threads must call
the procedure bond. After the bond call, two instances of hReady and one instance of oReady should
return.

So far, Mother Nature has come up with two possible solutions. For each approach, determine which
of the following is the case:

(a) The solution is incorrect because race conditions are possible.

(b) The solution is incorrect because it suffers from starvation (that is, some thread might wait
forever even when the conditions to bond are met)

(c) The solution is correct.

If the given approach is incorrect, add synchronization primitives to make it correct.

You may assume the semaphore implementation that enforces FIFO order for wakeups, that is the
thread waiting longest in P() is always the next thread woken up by a call to V().
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(a) Solution 1:

sem_t h_wait = sem_init(0);

sem_t o_wait = sem_init(0);

int count = 0;

hReady() {

count++;

if(count % 2 == 0) {

V(o_wait);

}

P(h_wait);

return;

}

oReady() {

P(o_wait);

bond();

V(h_wait);

V(h_wait);

return;

}

(b) Solution 2:

sem_t h_wait = sem_init(0);

sem_t o_wait = sem_init(0);

hReady(){

V(o_wait)

P(h_wait)

return;

}

oReady() {

P(o_wait);

P(o_wait);

bond();

V(h_wait);

V(h_wait);

return;

}
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2. Use locks and condition variables to synchronize the bounded buffer example we discussed in class.
typedef struct {

int *b;

int n;

int front;

int rear;

}

void init(bbuf_t * ptr, int n){

ptr->b = malloc(n*sizeof(int));

ptr->n = n;

ptr->front = 0;

ptr->rear = 0;

}

void put(bbuf_t * ptr, int val){

ptr->b[ptr->rear] = val;

ptr->rear = (ptr->rear + 1) % ptr->n;

}

int get(bbuf_t* ptr){

int val = ptr->b[ptr->front];

ptr->front = (ptr->front + 1) % ptr->n;

}
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