
CS 105 April 27, 2020

Lecture 23: System I/O

The File System Abstraction
• interface that provides operations on data stored long-term on

disk

• a file is a named sequence of stored bytes
• name is defined on creation
• processes use name to subsequently access that file

• two types of files
• normal files (an arbitrary sequence of bytes)
• directories (a special type of file)

• a file is comprised of two parts:
• data: information a user or application puts in a file

• an array of untyped bytes
• implemented as an array of fixed-size blocks

• metadata: information added and managed by the OS
• e.g., size, owner, security info, modification time

File Names
• Each file has a unique low-level name

• distinct from location; processes don't care where on disk a file is
stored

• file system provides mapping from low-level names to storage location

• Each file has one or more human-readable names
• file system provides mapping from human-readable names to low-level

names

• Naming conventions
• up to 255 characters long
• case sensitive (UNIX) or not case sensitive (Windows)
• extensions not enforced (UNIX) or associated with meaning (Windows)

Path Names
• Each path from root is a

name for a leaf
• /foo/foo.txt
• /bar/baz/baz.txt

• Each UNIX directory
contains 2 special entries
• "." = this directory
• ".." = parent directory

• Absolute paths: path of
file from the root directory

• Relative paths: path from
current working directory

/

foo bar

bar
.txt bazfoo

.txt

baz
.txt

Directories
• a directory is a file that provides mappings from human-

readable names to low-level names (i.e., file numbers):
• a list of human-readable names
• a mapping from each name to a specific underlying file or directory

Directories
• OS uses path name to find directories and files

• Directory maps file name to attributes
and locations

File 158
"/home"

File 818
"/home/eleanor"

ada 682
eleanor 818
rett 830

music 320
work 219
foo.txt 871

File 871
"/home/eleanor/foo.txt"

Basic File System Operations
• Create a file
• Delete a file
• Write to a file
• Read from a file
• Seek to somewhere in a file

How should we implement this?

Unix I/O Interface
• Elegant mapping of files to devices allows kernel to export

simple interface:
• Opening a file

• open()and close()
• Reading and writing a file

• read() and write()
• Changing the current file position (seek)

• indicates next offset into file to read or write
• lseek()

8

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

The File System Stack

POSIX API (open, read, write, close, …)

Generic Block Interface (block read/write)

Specific Block Interface (protocol-specific read/write)

Language Libraries (e.g.,fopen, fread, fwrite, fclose,…)

Application

us
er

 le
ve

l
ke

rn
el

 m
od

eFile System

Generic Block Layer

Device Driver

Opening Files
• Opening a file informs the kernel that you are getting

ready to access that file

• Returns a small identifying integer file descriptor
• fd == -1 indicates that an error occurred

• Each process created by a Linux shell begins life with
three open files associated with a terminal:
• 0: standard input (stdin)
• 1: standard output (stdout)
• 2: standard error (stderr)

10

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {
perror("open");
exit(1);

}

Kernel Data Structures
Descriptor table

(table created on fork(),
one table

per process)

Open file table
(entry created on open,

shared by
all processes)

v-node table
(one per file,

shared by
all processes)

fd 0
fd 1
fd 2
fd 3
fd 4

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File pos
refcnt=1

...

File A

File pos
refcnt=1

...
File B

Closing Files
• Closing a file informs the kernel that you are finished

accessing that file

• Closing an already closed file is a recipe for disaster in
threaded programs

• Moral: Always check return codes, even for seemingly
benign functions such as close()

12

int fd; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror("close");
exit(1);

}

Reading Files
• Reading a file copies bytes from the current file position to

memory, and then updates file position

• Returns number of bytes read from file fd into buf
• Return type ssize_t is signed integer
• nbytes < 0 indicates that an error occurred
• Short counts (nbytes < sizeof(buf)) are possible and are not

errors!

13

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */
/* Then read up to 512 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror("read");
exit(1);

}

Writing Files
• Writing a file copies bytes from memory to the current file

position, and then updates current file position

• Returns number of bytes written from buf to file fd
• nbytes < 0 indicates that an error occurred
• As with reads, short counts are possible and are not errors!

14

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

perror("write");
exit(1);

}

On Short Counts
• Short counts can occur in these situations:

• Encountering (end-of-file) EOF on reads
• Reading text lines from a terminal

• Short counts never occur in these situations:
• Reading from disk files (except for EOF)
• Writing to disk files

• Best practice is to always allow for short counts.

15

Buffered Reads/Writes
• stream data is stored in a kernel buffer and returned to the

application on request
• enables same system call interface to handle both

streaming reads (e.g., keyboard) and block reads (e.g.,
disk)

Exercise 1: Reading and Writing
• What gets printed when the following program is run?

int main(int argc, char ** argv){
int fd1, fd2;
char c;

fd1 = open("foobar.txt", O_RDONLY);
fd2 = open("foobar.txt", O_RDONLY);

read(fd1, &c, 1);
read(fd2, &c, 1);

printf("c = %c\n", c);

return 0;
}

Exercise 1: Reading and Writing

File descriptor table Open file table v-node table

0
1
2
3
4

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File pos
refcnt=1

...

foobar.txt

File pos
refcnt=1

...
foobar.txt

fd2
fd1

Processes and Files
• A child process inherits all file descriptors from its parent

fd 0
fd 1
fd 2
fd 3
fd 4

File pos
refcnt=2...

File pos
refcnt=2

...

Parent's table

fd 0
fd 1
fd 2
fd 3
fd 4

Child's table

File access

...

File size
File type

File access

...

File size
File type

File A

File B

File descriptor table Open file table v-node table

Exercise 2: Processes and Files
• Suppose the file foobar.txt consists of the six ASCII

characters foobar. What is printed when the following
program is run?

int main(int argc, char ** argv){
int fd1;
char c;

fd1 = open("foobar.txt", O_RDONLY);
if(fork() == 0){

read(fd, &c, 1);
return 0;

} else {
wait();
read(fd, &c, 1);
printf("c = %c\n", c);
return 0;

}
}

refcnt=1

Exercise 2: Processes and Files

fd 0
fd 1
fd 2
fd 3
fd 4

File pos
refcnt=2...

Parent's table

fd 0
fd 1
fd 2
fd 3
fd 4

Child's table

File access

...

File size
File type

foobar.txt

File descriptor table Open file table v-node table

I/O Redirection
• Examples of I/O redirection

• a program can send output to a file: ./ringbuf 4 > testout.txt
• a program can read input from a file: ./ringbuf 4 < testin.txt
• output of one program can be input to another: cpp file.c | cparse |

cgen | as > file.o

• I/O redirection uses a function called dup2

• returns file descriptor if OK, -1 on error

int dup2(int oldfd, int newfd);

I/O Redirection

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
refcnt=0

...
File pos
refcnt=2

...

File access

...

File size
File type

File access

...

File size
File type

File A

File B

Exercise 3: I/O Redirection
• Suppose the file foobar.txt consists of the six ASCII

characters foobar. What is printed when the following
program is run?

int main(){
int fd1, fd2;
char c;

fd1 = open("foobar.txt",O_RDONLY);
fd2 = open("foobar.txt",O_RDONLY);

read(fd2, &c, 1);
dup2(fd2, fd1);
read(fd1, &c, 1);

printf("c = %c\n", c);

return 0;
}

Exercise 3: I/O Redirect

File descriptor table Open file table v-node table

0
1
2
3
4

stderr
stdout
stdin File access

...

File size
File type

File pos
refcnt=1

...

foobar.txt

File pos
refcnt=1

...
foobar.txt

fd2
fd1

refcnt=2

refcnt=0

System I/O as a Uniform Interface
• Operating systems use the System I/O commands as an

interface for all I/O devices

• The commands to read and write to an open file descriptor
are the same no matter what type of "file" it is

• Types of files include
• file
• keyboard
• screen
• pipe
• device
• network

Exercise 4: Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. How much time did you spend on this video lecture?

3. Do you have any comments or suggestions for future
classes?

