
CS 105 April 13, 2020

Lecture 19: Dynamic Memory

Virtual Memory
• byte addressable array made up of

four logical sements

• stack provides local storage for
procedures
• "top" of the stack stored in register %rsp

• heap is an area of memory
maintained by a dynamic memory
allocator
• kernel maintains variable brk in PCB

that points to the top of heap

• data stores global variables

• code stores program instructions

• attempt to access uninitialized
address results in exception
(segfault)

Stack

0x7FFFFFFFFFFF

%rsp

0x000000000000

Data

Code

Heap

%rip

brk

fork
• system call that creates a new process
• when called, system switches to executing kernel code
• creates a new process

• initializes process data structures (e.g. PCB, file table, page table)
• file table, page table are copies of parent, new process id
• flags each page in both parent and child process as read-only,

copy-on-write
• when either process attempts to write to a page, it triggers

a permission exception
• exception handler creates copy of page and updates page

table

execve
• load and runs the specified program in the current

process
• initialize data and code pages by memory mapping the

relevant sections of the executable file
• initialize stack and heap locations (size 0)

• exact location randomized (ASLR)
• initialize program counter to first instruction

Dynamic Memory allocation
• user-level memory mapping
• variable-size stack frames
• heap memory

The Heap
• the heap is an area of
memory for dynamic
memory allocation

• the kernel maintains a
variable brk in the PCB
that points to the top of
the heap

• programmers can use a
dynamic memory
allocator to acquire
additional memory at run
time

Stack

0x7FFFFFFF

%rsp

0x00000000

Data

Code

Heap

%rip

brk

Dynamic Memory Allocation

7

Dynamic memory allocator
• Manages the heap

• organizes the heap as a collection of (variable-size) blocks, each of
which is either allocated or free

• allocates and deallocates memory
• may ask OS for additional heap space using system call sbrk()

• Part of the process’s runtime system
• Linked into program

Example dynamic memory allocators
• malloc and free in C
• new and delete in C++
• object creation & garbage collection in Java
• object creation & garbage collection in Python

explicit allocators

implicit allocators

#include <stdio.h>
#include <stdlib.h>
void foo(int n) {

int i, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++)

p[i] = i;

/* Return allocated block to the heap */
free(p);

}

Allocation Example using malloc

8

Allocation Example

9

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Allocator Requirements
1) Must handle arbitrary request sequences:

• cannot control number, size, or order of requests
• (but we'll assume that each free request corresponds to an allocated block)

2) Must respond immediately:
• no reordering or buffering requests

3) Must not modify allocated blocks:
• can only allocate from free memory on the heap
• cannot modify or move blocks once they are allocated

4) Must align blocks:
• 8-byte (x86) or 16-byte (x86-64) alignment on Linux
• Ensures that allocated blocks can hold any type of data

5) Must only use the heap:
• any data structures used by the allocator must be stored in the heap

First Example: A Simple Allocator

11

void *malloc (size_t size) {
return sbrk(align(size));

}

void free (void *ptr) {
// do nothing

}

Advantages
• Simple
• Blazing fast

Disadvantages
• Memory is never recycled
• Wastes a lot of space

Allocator Goals

• Throughput: number of requests completed per time unit
• Make allocator efficient
• Example: if your allocator processes 5,000 malloc calls and

5,000 free calls in 10 seconds then throughput is 1,000
operations/second

• Memory Utilization: fraction of heap memory allocated
• Minimize wasted space

• Peak Memory Utilization 𝑈" =
$%&
!"#

'()*+),,-*)"+.)" "/0+ /

'/1+ -2 3+)()" "/0+ "

• These goals are often conflicting

12

Utilization Blocker: Internal Fragmentation
• For a given block, internal fragmentation occurs if payload is

smaller than block size

• Caused by
• Overhead of maintaining heap data structures
• Padding for alignment purposes
• Explicit policy decisions

(for example, returning a big block to satisfy a small request)

• Depends only on the pattern of previous requests
• Thus, easy to measure

13

Payload Internal
fragmentation

Block

Internal
fragmentation

Utilization Blocker: External Fragmentation
• Occurs when there is enough aggregate heap memory,

but no single free block is large enough

• Depends on the pattern of future requests
• Thus, difficult to measure

14

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6)

Exercise 1: Utilization
Assume your heap is initially of size zero and you then run
the following sequence of requests (below left) using the
given allocator (below right) on a system with 4-byte
alignment. What is the peak memory utilization after you
complete the last request?

Hint: Peak Memory Utilization 𝑈" =
$%&
456

'()*+),,-*)"+.)" "/0+ /

'/1+ -2 3+)()" "/0+ "

void *malloc (size_t size) {
return sbrk(align(size));

}

void free (void *ptr) {
// do nothing

}

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Exercise 1: Utilization

16

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Challenges
• Goal: maximize throughput and peak memory utilization

• Implementation challenges:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation?
• What do we do with the extra space when allocating a structure

that is smaller than the free block it is placed in?
• How do we reinsert a freed block?

17

Knowing How Much to Free
• Standard method

• Keep the length of a block in the word preceding the block.
• This word is often called the header field or header

• Requires an extra (4 byte) word for every allocated block

free(p0)

p0

p0 = malloc(16) 20

header = block size payload

18

Challenges
• Goal: maximize throughput and peak memory utilization

• Implementation Challenges:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation?
• What do we do with the extra space when allocating a structure

that is smaller than the free block it is placed in?
• How do we reinsert a freed block?

19

Keeping Track of Free Blocks
• Method 1: Implicit list using length—links all blocks

20

20 16 824

Method 1: Implicit List
• For each block we need both size and allocation status

• Could store this information in two words: wasteful!
• Standard trick

• If blocks are aligned, some low-order address bits are always 0
• Instead of storing an always-0 bit, use it as a allocated/free flag
• When reading size word, must mask out this bit

21

Size

4 bytes

Format of
allocated and
free blocks Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

Detailed Implicit Free List Example

Start
of

heap

8-byte aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

22

Exercise 2: Block Headers
• Determine the block sizes and header values that would

result from the following sequence of malloc requests.
Assume that the allocator uses an implicit list implementation
with the block format just described and maintains 8-byte
alignment.

Request Block size (decimal) Block header (hex)
malloc(1)
malloc(5)
malloc(12)

Size

4 bytes

Payload

a

Optional
padding

8 0x00000009

16 0x00000011
16 0x00000011

Challenges
• Goal: maximize throughput and peak memory utilization

• Implementation Challenges:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation?
• What do we do with the extra space when allocating a structure

that is smaller than the free block it is placed in?
• How do we reinsert a freed block?

24

Implicit List: Finding a Free Block
• First fit. Search list from beginning, choose first free block that fits:

• Can take linear time in total number of blocks (allocated and free)
• In practice it can cause “splinters” at beginning of list

• Next fit. Like first fit, but search list starting where previous search finished:
• Should often be faster than first fit: avoids re-scanning unhelpful blocks
• Some research suggests that fragmentation is worse

• Best fit. Search the list, choose the best free block: fits, with fewest bytes left
over:
• Keeps fragments small—usually improves memory utilization
• Will typically run slower than first fit

25

p = start;
while ((p < end) && \\ not passed end

((*p & 1) || \\ already allocated
(*p <= len))) \\ too small

p = p + (*p & -2); \\ goto next block (word addressed)

Challenges
• Goal: maximize throughput and peak memory utilization

• Implementation Challenges:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation?
• What do we do with the extra space when allocating a structure

that is smaller than the free block it is placed in?
• How do we reinsert a freed block?

26

Implicit List: Allocating in Free Block
• Allocating in a free block: splitting

• Since allocated space might be smaller than free space, we might
want to split the block

27

void addblock(ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even
int oldsize = *p & -2; // mask out low bit
*p = newsize | 1; // set new length
if (newsize < oldsize)

*(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

16 17 924

17 917

p

816

addblock(p, 4)

Challenges
• Goal: maximize throughput and peak memory utilization

• Implementation Challenges:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation?
• What do we do with the extra space when allocating a structure

that is smaller than the free block it is placed in?
• How do we reinsert a freed block?

28

Implicit List: Freeing a Block
• Simplest implementation:

• Need only clear the “allocated” flag
void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation”

29

17 917 816

free(p) p

16 17 916 8

malloc(20)Oops!

There is enough free space, but the allocator won’t be able to find it

Implicit List: Coalescing
• Join (coalesce) with next/previous blocks, if they are free

• Coalescing with next block

• But how do we coalesce with previous block?

30

void free_block(ptr p) {
*p = *p & -2; // clear allocated flag
next = p + *p; // find next block
if ((*next & 1) == 0)

*p = *p + *next; // add to this block if
} // not allocated

17 917 8

free(p) p

16 17 9

16

24 8

logically
gone

Implicit List: Bidirectional Coalescing
• Boundary tags [Knuth73]

• Replicate size/allocated word at “bottom” (end) of free blocks
• Allows us to traverse the “list” backwards, but requires extra space
• Important and general technique!

31

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

16 16 17 17 24 1724 17

Header

Constant-Time Coalescing
Case 2: Block above allocated, block below freeCase 1: Blocks above and below allocated

Case 2: Block above free, block below allocated Case 4: Blocks above and below free

0x00000018

0x00000018

Exercise 3: Coalescing
• Assume the current state of the heap is shown below.

What would be the state of the heap after the function
free(0x114) is executed?

0x00000009

0x5ca1ab1e

0x00000011

0x0000000d

0xdeadcafe

0x0000000d

0x0000000c

0x00000047

0x00000011
0x100

0x104

0x108

0x10c

0x110

0x114

0x118

0x11c

0x120

0x124

previous block (allocated)

current block (allocated)

following block (free)

0x0000000c

Implicit Lists: Summary
• Implementation: very simple

• Allocate cost: linear time in the worst case
• Free cost: constant time worst case–even with coalescing
• Memory usage: depends on the placement policy

• First-fit, next-fit, or best-fit

• Not used in practice for malloc/free because of linear-
time allocation
§ used in many special purpose applications

• However, the concepts of splitting and boundary tag
coalescing are general to all allocators

34

Keeping Track of Free Blocks
• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list
• Different free lists for different size classes

• Method 4: Blocks sorted by size
• Can use a balanced tree (e.g. Red-Black tree) with pointers within

each free block, and the length used as a key

35

5 4 26

5 4 26

Summary of Key Allocator Policies
• Storage policy:

• what data structure will you use to keep track of the free blocks?

• Placement policy:
• First-fit, next-fit, best-fit, etc.
• Trades off lower throughput for less fragmentation
• segregated free lists approximate a best fit placement policy without

having to search entire free list

• Splitting policy:
• When do we go ahead and split free blocks?
• How much internal fragmentation are we willing to tolerate?

• Coalescing policy:
• Immediate coalescing: coalesce each time free is called
• Deferred coalescing: try to improve performance of free by

deferring coalescing until needed. Examples:
• Coalesce as you scan the free list for malloc
• Coalesce when the amount of external fragmentation reaches some

threshold

36

Exercise 4: Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. How much time did you spend on this video lecture?

3. Do you have any comments or suggestions for future
classes?

