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Lecture 18: Virtual Memory (cont'd)
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Review: Paging
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Review: Virtual Pages
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Review: Problems with Paging
• Memory Consumption: page table is really big

• Example: consider 64-bit address space, 4KB (2^12) page size,  
assume each page table entry is 8 bytes.

• Larger pages increase internal fragmentation

• Performance: every data/instruction access requires two 
memory accesses: 
• One for the page table
• One for the data/instruction 



Traditional Paging

• page table is stored in 
physical memory

• implemented as array of 
page table entries

• Page Table Base Register
(PTBR) stores physical 
address of beginning of
page table

• Page table entries are
accessed by using the
page number as the index 
into the page table
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Two-level Page Tables

• page table is stored in 
virtual memory pages

• page directory is stored in 
physical memory (page 
table for the page table)

• Implemented as array of 
page directory entries

• Page Table Base Register
(PTBR) stores physical 
address of beginning of
page directory
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Two-level Page Tables
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+ only store in-use page table entries in physical memory 
+ easier to allocate page table
- more memory accesses



Exercise 1: Two-level Page Tables
• Assume you are working on an architecture with a 32-bit 

virtual address space in which idx1 is 4 bits, idx2 is 12 
bits, and offset is 16 bits. 

• How big is a page in this architecture?
• How big is a page table entry in this architecture?

4 bit idx1 16 bit offset12 bit idx2

𝟐𝟏𝟔 bytes = 𝟔𝟒 KB
𝟏𝟔 bytes



Exercise 2: Two-level Page Tables
Assume you are still 
working on that architecture.

Compute the physical
address corresponding to
each of the virtual address
(or answer "invalid"):

a) 0x00000000
b) 0x20022002
c) 0x10015555
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• Problem: How big does the page directory get?
• Assume you have a 48-bit address space
• Assume you have 4KiB pages 
• Assume you have 8 byte page table entries/page directory entries

• Goal: Page Table Directory should fit in one frame
• Multi-level page tables: add additional level(s) to tree

Multi-level Page Tables

27 bit idx1 12 bit offset9 bit idx2

48 bits

12 bit offset9 bit idx4

48 bits

9 bit idx39 bit idx1 9 bit idx2

128 MB



Review: Problems with Paging
• Memory Consumption: page table is really big

• Example: consider 64-bit address space, 4KB (2^12) page size,  
assume each page table entry is 8 bytes.

• Larger pages increase internal fragmentation

• Performance: every data/instruction access requires two 
memory accesses: 
• One for the page table
• One for the data/instruction 

five

each of the four levels of page table



Translation-Lookaside Buffer (TLB)
• General idea: if address translation is slow, cache some 

of the answers
• Translation-lookaside buffer is an address translation 

cache that is built into the MMU



Exercise 3: TLBs
• Consider the following piece of code that

multiplies two matrices:

• Assume that the system has 4KiB pages, the TLB stores 
8 entries, and the TLB uses a LRU eviction policy. Recall 
that ints are 4 bytes. 

• Compute the number of TLB misses (assuming the TLB is 
initially empty)

int a[1024][1024], b[1024][1024], c[1024][1024]

void multiply(){
for(int i = 0; i < 1024; i++)

for(int j = 0; j < 1024; j++)
for(int k = 0; k < 1024; k++)

c[i][j] += a[i][k] * b[k][j];
}



Example: The Linux x86 Address Space
• Use "only" 48-bit addresses (top 

16 bits not used)
• 4KiB pages by default

• supports larger "superpages"
• Four-level page table
• Physical memory stores

memory pages, memory-
mapped files, cached file pages

• Updates are periodically written 
to disk by background 
processes

• Page eviction algorithm uses 
variant of LRU called 2Q
• approximates LRU with clock
• maintains two lists (active/inactive)

• Stack is marked non-executable
• Virtual address of stack/heap 

start are randomized each time 
process is initialized
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Example: Core i7 Address Translation
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Exercise 4: Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. Do you have any comments or suggestions for future 
classes?


