
CS 105 April 8, 2020

Lecture 18: Virtual Memory (cont'd)

Review: Address Translation

MMU
Virtual Address invalid

Exception
Physical Address

Data

Code
Data

Stack

Heap

Review: Paging

Code
Data

Stack

Heap

Physical Memory

Virtual Memory

Frame 0
Frame 1
Frame 2
Frame 3
Frame 4
Frame 5
Frame 6
Frame 7
Frame 8
Frame 9

Frame 10
Frame 11
Frame 12
Frame 13
Frame 14
Frame 15
Frame 16
Frame 17

Page 0
Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7

Review: Virtual Pages

vaddr
NULL page or

access not allowed

SegFault

Data

paddr =

Code
Data

Stack

Heap
MMU

page# offset

Frame[page#] offset
…

v Frame Access
1 47 R,W
0 NULL R,W
0 13 R,W
1 42 R,X

Invalid page

Page Fault

page table

Review: Problems with Paging
• Memory Consumption: page table is really big

• Example: consider 64-bit address space, 4KB (2^12) page size,
assume each page table entry is 8 bytes.

• Larger pages increase internal fragmentation

• Performance: every data/instruction access requires two
memory accesses:
• One for the page table
• One for the data/instruction

Traditional Paging

• page table is stored in
physical memory

• implemented as array of
page table entries

• Page Table Base Register
(PTBR) stores physical
address of beginning of
page table

• Page table entries are
accessed by using the
page number as the index
into the page table

1 47 R,W

0 NULL R,W

0 13 R,W

1 42 R,X

0 NULL R,W

0 NULL R,W

0 NULL R,W

1 59 R,X

PTBR

Two-level Page Tables

• page table is stored in
virtual memory pages

• page directory is stored in
physical memory (page
table for the page table)

• Implemented as array of
page directory entries

• Page Table Base Register
(PTBR) stores physical
address of beginning of
page directory

0 NULL

1 62

0 17

1 77
PTBR1 47 R,W

0 NULL R,W

0 13 R,W

1 42 R,X

0 NULL R,W

0 NULL R,W

0 NULL R,W

1 59 R,X

Two-level Page Tables

vaddr

Data

MMU

Frame[idx1] offset

…

v PTFrame

0 NULL

1 62

0 17

1 77

page dir

idx1 offsetidx2

v Frame Acc

1 47 R,W

0 NULL R,W

0 13 R,W

1 42 R,X

page table page

Frame[idx1]

…
+ only store in-use page table entries in physical memory
+ easier to allocate page table
- more memory accesses

Exercise 1: Two-level Page Tables
• Assume you are working on an architecture with a 32-bit

virtual address space in which idx1 is 4 bits, idx2 is 12
bits, and offset is 16 bits.

• How big is a page in this architecture?
• How big is a page table entry in this architecture?

4 bit idx1 16 bit offset12 bit idx2

𝟐𝟏𝟔 bytes = 𝟔𝟒 KB
𝟏𝟔 bytes

Exercise 2: Two-level Page Tables
Assume you are still
working on that architecture.

Compute the physical
address corresponding to
each of the virtual address
(or answer "invalid"):

a) 0x00000000
b) 0x20022002
c) 0x10015555

4 bit idx1 16 bit offset12 bit idx2

v PTFrame

1 0x0

1 0x2

0 NULL

0 NULL

page directory
v Frame Acc

1 0x0047 R,W

0 NULL R,W

0 0x0013 R,W

1 0x0042 R,X

page table

…

0x3

0x2

0x1

0x0

0 NULL0xF 0 0x002A R

1 0xCAFE R,W

0 NULL R,W

0 13 R,W

…

0x3

0x2

0x1

0x0

0x1000

0x1001

0x1002

0x1003

…

0x00470000
invalid
0xCAFE5555

• Problem: How big does the page directory get?
• Assume you have a 48-bit address space
• Assume you have 4KiB pages
• Assume you have 8 byte page table entries/page directory entries

• Goal: Page Table Directory should fit in one frame
• Multi-level page tables: add additional level(s) to tree

Multi-level Page Tables

27 bit idx1 12 bit offset9 bit idx2

48 bits

12 bit offset9 bit idx4

48 bits

9 bit idx39 bit idx1 9 bit idx2

128 MB

Review: Problems with Paging
• Memory Consumption: page table is really big

• Example: consider 64-bit address space, 4KB (2^12) page size,
assume each page table entry is 8 bytes.

• Larger pages increase internal fragmentation

• Performance: every data/instruction access requires two
memory accesses:
• One for the page table
• One for the data/instruction

five

each of the four levels of page table

Translation-Lookaside Buffer (TLB)
• General idea: if address translation is slow, cache some

of the answers
• Translation-lookaside buffer is an address translation

cache that is built into the MMU

Exercise 3: TLBs
• Consider the following piece of code that

multiplies two matrices:

• Assume that the system has 4KiB pages, the TLB stores
8 entries, and the TLB uses a LRU eviction policy. Recall
that ints are 4 bytes.

• Compute the number of TLB misses (assuming the TLB is
initially empty)

int a[1024][1024], b[1024][1024], c[1024][1024]

void multiply(){
for(int i = 0; i < 1024; i++)

for(int j = 0; j < 1024; j++)
for(int k = 0; k < 1024; k++)

c[i][j] += a[i][k] * b[k][j];
}

Example: The Linux x86 Address Space
• Use "only" 48-bit addresses (top

16 bits not used)
• 4KiB pages by default

• supports larger "superpages"
• Four-level page table
• Physical memory stores

memory pages, memory-
mapped files, cached file pages

• Updates are periodically written
to disk by background
processes

• Page eviction algorithm uses
variant of LRU called 2Q
• approximates LRU with clock
• maintains two lists (active/inactive)

• Stack is marked non-executable
• Virtual address of stack/heap

start are randomized each time
process is initialized

Code
Data

Stack

Heap

Page 0: Invalid

0x800000000000
Kernel (logical)

Kernel (virtual)

0x000000000000

0xFFFFFFFFFFFF

Example: Core i7 Address Translation
CPU

VPN VPO
36 12

TLBT TLBI
432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2
99

PTE

CR3

PPN PPO
40 12

Page tables

TLB
miss

TLB
hit

Physical
address
(PA)

Result
32/64

...

CT CO
40 6

CI
6

L2, L3, and
main memory

L1 d-cache
(64 sets, 8 lines/set)

L1
hit

L1
miss

Virtual address (VA)

VPN3 VPN4
99

PTE PTE PTE

Exercise 4: Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. Do you have any comments or suggestions for future
classes?

